reader.py 10.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

K
Kaipeng Deng 已提交
15
import os
Q
qingqing01 已提交
16 17 18
import traceback
import six
import sys
M
Manuel Garcia 已提交
19

Q
qingqing01 已提交
20
if sys.version_info >= (3, 0):
M
Manuel Garcia 已提交
21
    pass
Q
qingqing01 已提交
22
else:
M
Manuel Garcia 已提交
23
    pass
Q
qingqing01 已提交
24 25
import numpy as np

26 27
from paddle.io import DataLoader, DistributedBatchSampler
from paddle.fluid.dataloader.collate import default_collate_fn
Q
qingqing01 已提交
28

M
Manuel Garcia 已提交
29
from ppdet.core.workspace import register
Q
qingqing01 已提交
30
from . import transform
K
Kaipeng Deng 已提交
31
from .shm_utils import _get_shared_memory_size_in_M
Q
qingqing01 已提交
32 33 34 35

from ppdet.utils.logger import setup_logger
logger = setup_logger('reader')

K
Kaipeng Deng 已提交
36 37
MAIN_PID = os.getpid()

Q
qingqing01 已提交
38 39

class Compose(object):
40
    def __init__(self, transforms, num_classes=80):
Q
qingqing01 已提交
41 42 43 44 45
        self.transforms = transforms
        self.transforms_cls = []
        for t in self.transforms:
            for k, v in t.items():
                op_cls = getattr(transform, k)
W
wangxinxin08 已提交
46 47 48 49 50
                f = op_cls(**v)
                if hasattr(f, 'num_classes'):
                    f.num_classes = num_classes

                self.transforms_cls.append(f)
Q
qingqing01 已提交
51 52 53 54 55 56 57

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
58 59 60
                logger.warn("fail to map sample transform [{}] "
                            "with error: {} and stack:\n{}".format(
                                f, e, str(stack_info)))
Q
qingqing01 已提交
61 62 63 64 65 66
                raise e

        return data


class BatchCompose(Compose):
67
    def __init__(self, transforms, num_classes=80, collate_batch=True):
Q
qingqing01 已提交
68
        super(BatchCompose, self).__init__(transforms, num_classes)
69
        self.collate_batch = collate_batch
Q
qingqing01 已提交
70 71 72 73 74 75 76

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
77 78 79
                logger.warn("fail to map batch transform [{}] "
                            "with error: {} and stack:\n{}".format(
                                f, e, str(stack_info)))
Q
qingqing01 已提交
80 81
                raise e

82 83 84 85 86 87 88 89 90
        # remove keys which is not needed by model
        extra_key = ['h', 'w', 'flipped']
        for k in extra_key:
            for sample in data:
                if k in sample:
                    sample.pop(k)

        # batch data, if user-define batch function needed
        # use user-defined here
91
        if self.collate_batch:
92
            batch_data = default_collate_fn(data)
93
        else:
94 95
            batch_data = {}
            for k in data[0].keys():
96 97 98
                tmp_data = []
                for i in range(len(data)):
                    tmp_data.append(data[i][k])
W
wangguanzhong 已提交
99
                if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
100
                    tmp_data = np.stack(tmp_data, axis=0)
101
                batch_data[k] = tmp_data
Q
qingqing01 已提交
102 103 104 105
        return batch_data


class BaseDataLoader(object):
K
Kaipeng Deng 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118
    """
    Base DataLoader implementation for detection models

    Args:
        sample_transforms (list): a list of transforms to perform
                                  on each sample
        batch_transforms (list): a list of transforms to perform
                                 on batch
        batch_size (int): batch size for batch collating, default 1.
        shuffle (bool): whether to shuffle samples
        drop_last (bool): whether to drop the last incomplete,
                          default False
        num_classes (int): class number of dataset, default 80
W
wangguanzhong 已提交
119 120 121 122 123
        collate_batch (bool): whether to collate batch in dataloader.
            If set to True, the samples will collate into batch according
            to the batch size. Otherwise, the ground-truth will not collate,
            which is used when the number of ground-truch is different in 
            samples.
K
Kaipeng Deng 已提交
124 125 126 127 128 129 130 131 132 133
        use_shared_memory (bool): whether to use shared memory to
                accelerate data loading, enable this only if you
                are sure that the shared memory size of your OS
                is larger than memory cost of input datas of model.
                Note that shared memory will be automatically
                disabled if the shared memory of OS is less than
                1G, which is not enough for detection models.
                Default False.
    """

Q
qingqing01 已提交
134 135 136 137 138 139
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
140
                 num_classes=80,
141
                 collate_batch=True,
K
Kaipeng Deng 已提交
142
                 use_shared_memory=False,
Q
qingqing01 已提交
143 144 145 146 147 148
                 **kwargs):
        # sample transform
        self._sample_transforms = Compose(
            sample_transforms, num_classes=num_classes)

        # batch transfrom 
149 150
        self._batch_transforms = BatchCompose(batch_transforms, num_classes,
                                              collate_batch)
Q
qingqing01 已提交
151 152 153
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.drop_last = drop_last
K
Kaipeng Deng 已提交
154
        self.use_shared_memory = use_shared_memory
Q
qingqing01 已提交
155 156 157 158 159 160
        self.kwargs = kwargs

    def __call__(self,
                 dataset,
                 worker_num,
                 batch_sampler=None,
K
Kaipeng Deng 已提交
161
                 return_list=False):
Q
qingqing01 已提交
162
        self.dataset = dataset
K
Kaipeng Deng 已提交
163
        self.dataset.check_or_download_dataset()
164
        self.dataset.parse_dataset()
Q
qingqing01 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178
        # get data
        self.dataset.set_transform(self._sample_transforms)
        # set kwargs
        self.dataset.set_kwargs(**self.kwargs)
        # batch sampler
        if batch_sampler is None:
            self._batch_sampler = DistributedBatchSampler(
                self.dataset,
                batch_size=self.batch_size,
                shuffle=self.shuffle,
                drop_last=self.drop_last)
        else:
            self._batch_sampler = batch_sampler

179 180 181 182
        # DataLoader do not start sub-process in Windows and Mac
        # system, do not need to use shared memory
        use_shared_memory = self.use_shared_memory and \
                            sys.platform not in ['win32', 'darwin']
K
Kaipeng Deng 已提交
183 184 185 186 187 188 189 190
        # check whether shared memory size is bigger than 1G(1024M)
        if use_shared_memory:
            shm_size = _get_shared_memory_size_in_M()
            if shm_size is not None and shm_size < 1024.:
                logger.warn("Shared memory size is less than 1G, "
                            "disable shared_memory in DataLoader")
                use_shared_memory = False

Q
qingqing01 已提交
191 192 193 194 195 196
        self.dataloader = DataLoader(
            dataset=self.dataset,
            batch_sampler=self._batch_sampler,
            collate_fn=self._batch_transforms,
            num_workers=worker_num,
            return_list=return_list,
K
Kaipeng Deng 已提交
197
            use_shared_memory=use_shared_memory)
Q
qingqing01 已提交
198 199 200 201 202 203 204 205 206 207 208 209
        self.loader = iter(self.dataloader)

        return self

    def __len__(self):
        return len(self._batch_sampler)

    def __iter__(self):
        return self

    def __next__(self):
        try:
210
            return next(self.loader)
Q
qingqing01 已提交
211 212 213 214 215 216 217 218 219 220 221
        except StopIteration:
            self.loader = iter(self.dataloader)
            six.reraise(*sys.exc_info())

    def next(self):
        # python2 compatibility
        return self.__next__()


@register
class TrainReader(BaseDataLoader):
222 223
    __shared__ = ['num_classes']

Q
qingqing01 已提交
224 225 226 227 228 229
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=True,
                 drop_last=True,
230
                 num_classes=80,
231
                 collate_batch=True,
Q
qingqing01 已提交
232
                 **kwargs):
233 234 235
        super(TrainReader, self).__init__(sample_transforms, batch_transforms,
                                          batch_size, shuffle, drop_last,
                                          num_classes, collate_batch, **kwargs)
Q
qingqing01 已提交
236 237 238 239


@register
class EvalReader(BaseDataLoader):
240 241
    __shared__ = ['num_classes']

Q
qingqing01 已提交
242 243 244 245 246 247
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=True,
248
                 num_classes=80,
Q
qingqing01 已提交
249
                 **kwargs):
K
Kaipeng Deng 已提交
250 251
        super(EvalReader, self).__init__(sample_transforms, batch_transforms,
                                         batch_size, shuffle, drop_last,
252
                                         num_classes, **kwargs)
Q
qingqing01 已提交
253 254 255 256


@register
class TestReader(BaseDataLoader):
257 258
    __shared__ = ['num_classes']

Q
qingqing01 已提交
259 260 261 262 263 264
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
265
                 num_classes=80,
Q
qingqing01 已提交
266
                 **kwargs):
K
Kaipeng Deng 已提交
267 268
        super(TestReader, self).__init__(sample_transforms, batch_transforms,
                                         batch_size, shuffle, drop_last,
269
                                         num_classes, **kwargs)
G
George Ni 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285


@register
class EvalMOTReader(BaseDataLoader):
    __shared__ = ['num_classes']

    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 num_classes=1,
                 **kwargs):
        super(EvalMOTReader, self).__init__(sample_transforms, batch_transforms,
                                            batch_size, shuffle, drop_last,
286
                                            num_classes, **kwargs)
G
George Ni 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302


@register
class TestMOTReader(BaseDataLoader):
    __shared__ = ['num_classes']

    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 num_classes=1,
                 **kwargs):
        super(TestMOTReader, self).__init__(sample_transforms, batch_transforms,
                                            batch_size, shuffle, drop_last,
303
                                            num_classes, **kwargs)