reader.py 10.4 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

K
Kaipeng Deng 已提交
15
import os
Q
qingqing01 已提交
16 17 18 19 20 21 22 23 24 25 26
import copy
import traceback
import six
import sys
import multiprocessing as mp
if sys.version_info >= (3, 0):
    import queue as Queue
else:
    import Queue
import numpy as np

27 28
from paddle.io import DataLoader, DistributedBatchSampler
from paddle.fluid.dataloader.collate import default_collate_fn
Q
qingqing01 已提交
29 30 31

from ppdet.core.workspace import register, serializable, create
from . import transform
K
Kaipeng Deng 已提交
32
from .shm_utils import _get_shared_memory_size_in_M
Q
qingqing01 已提交
33 34 35 36

from ppdet.utils.logger import setup_logger
logger = setup_logger('reader')

K
Kaipeng Deng 已提交
37 38
MAIN_PID = os.getpid()

Q
qingqing01 已提交
39 40

class Compose(object):
41
    def __init__(self, transforms, num_classes=80):
Q
qingqing01 已提交
42 43 44 45 46
        self.transforms = transforms
        self.transforms_cls = []
        for t in self.transforms:
            for k, v in t.items():
                op_cls = getattr(transform, k)
W
wangxinxin08 已提交
47 48 49 50 51
                f = op_cls(**v)
                if hasattr(f, 'num_classes'):
                    f.num_classes = num_classes

                self.transforms_cls.append(f)
Q
qingqing01 已提交
52 53 54 55 56 57 58

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
59 60 61
                logger.warn("fail to map sample transform [{}] "
                            "with error: {} and stack:\n{}".format(
                                f, e, str(stack_info)))
Q
qingqing01 已提交
62 63 64 65 66 67
                raise e

        return data


class BatchCompose(Compose):
68
    def __init__(self, transforms, num_classes=80, collate_batch=True):
Q
qingqing01 已提交
69
        super(BatchCompose, self).__init__(transforms, num_classes)
70
        self.collate_batch = collate_batch
Q
qingqing01 已提交
71 72 73 74 75 76 77

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
78 79 80
                logger.warn("fail to map batch transform [{}] "
                            "with error: {} and stack:\n{}".format(
                                f, e, str(stack_info)))
Q
qingqing01 已提交
81 82
                raise e

83 84 85 86 87 88 89 90 91
        # remove keys which is not needed by model
        extra_key = ['h', 'w', 'flipped']
        for k in extra_key:
            for sample in data:
                if k in sample:
                    sample.pop(k)

        # batch data, if user-define batch function needed
        # use user-defined here
92
        if self.collate_batch:
93
            batch_data = default_collate_fn(data)
94
        else:
95 96
            batch_data = {}
            for k in data[0].keys():
97 98 99
                tmp_data = []
                for i in range(len(data)):
                    tmp_data.append(data[i][k])
W
wangguanzhong 已提交
100
                if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
101
                    tmp_data = np.stack(tmp_data, axis=0)
102
                batch_data[k] = tmp_data
Q
qingqing01 已提交
103 104 105 106
        return batch_data


class BaseDataLoader(object):
K
Kaipeng Deng 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119
    """
    Base DataLoader implementation for detection models

    Args:
        sample_transforms (list): a list of transforms to perform
                                  on each sample
        batch_transforms (list): a list of transforms to perform
                                 on batch
        batch_size (int): batch size for batch collating, default 1.
        shuffle (bool): whether to shuffle samples
        drop_last (bool): whether to drop the last incomplete,
                          default False
        num_classes (int): class number of dataset, default 80
W
wangguanzhong 已提交
120 121 122 123 124
        collate_batch (bool): whether to collate batch in dataloader.
            If set to True, the samples will collate into batch according
            to the batch size. Otherwise, the ground-truth will not collate,
            which is used when the number of ground-truch is different in 
            samples.
K
Kaipeng Deng 已提交
125 126 127 128 129 130 131 132 133 134
        use_shared_memory (bool): whether to use shared memory to
                accelerate data loading, enable this only if you
                are sure that the shared memory size of your OS
                is larger than memory cost of input datas of model.
                Note that shared memory will be automatically
                disabled if the shared memory of OS is less than
                1G, which is not enough for detection models.
                Default False.
    """

Q
qingqing01 已提交
135 136 137 138 139 140
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
141
                 num_classes=80,
142
                 collate_batch=True,
K
Kaipeng Deng 已提交
143
                 use_shared_memory=False,
Q
qingqing01 已提交
144 145 146 147 148 149
                 **kwargs):
        # sample transform
        self._sample_transforms = Compose(
            sample_transforms, num_classes=num_classes)

        # batch transfrom 
150 151
        self._batch_transforms = BatchCompose(batch_transforms, num_classes,
                                              collate_batch)
Q
qingqing01 已提交
152 153 154
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.drop_last = drop_last
K
Kaipeng Deng 已提交
155
        self.use_shared_memory = use_shared_memory
Q
qingqing01 已提交
156 157 158 159 160 161
        self.kwargs = kwargs

    def __call__(self,
                 dataset,
                 worker_num,
                 batch_sampler=None,
K
Kaipeng Deng 已提交
162
                 return_list=False):
Q
qingqing01 已提交
163
        self.dataset = dataset
K
Kaipeng Deng 已提交
164
        self.dataset.check_or_download_dataset()
165
        self.dataset.parse_dataset()
Q
qingqing01 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179
        # get data
        self.dataset.set_transform(self._sample_transforms)
        # set kwargs
        self.dataset.set_kwargs(**self.kwargs)
        # batch sampler
        if batch_sampler is None:
            self._batch_sampler = DistributedBatchSampler(
                self.dataset,
                batch_size=self.batch_size,
                shuffle=self.shuffle,
                drop_last=self.drop_last)
        else:
            self._batch_sampler = batch_sampler

180 181 182 183
        # DataLoader do not start sub-process in Windows and Mac
        # system, do not need to use shared memory
        use_shared_memory = self.use_shared_memory and \
                            sys.platform not in ['win32', 'darwin']
K
Kaipeng Deng 已提交
184 185 186 187 188 189 190 191
        # check whether shared memory size is bigger than 1G(1024M)
        if use_shared_memory:
            shm_size = _get_shared_memory_size_in_M()
            if shm_size is not None and shm_size < 1024.:
                logger.warn("Shared memory size is less than 1G, "
                            "disable shared_memory in DataLoader")
                use_shared_memory = False

Q
qingqing01 已提交
192 193 194 195 196 197
        self.dataloader = DataLoader(
            dataset=self.dataset,
            batch_sampler=self._batch_sampler,
            collate_fn=self._batch_transforms,
            num_workers=worker_num,
            return_list=return_list,
K
Kaipeng Deng 已提交
198
            use_shared_memory=use_shared_memory)
Q
qingqing01 已提交
199 200 201 202 203 204 205 206 207 208 209 210
        self.loader = iter(self.dataloader)

        return self

    def __len__(self):
        return len(self._batch_sampler)

    def __iter__(self):
        return self

    def __next__(self):
        try:
211
            return next(self.loader)
Q
qingqing01 已提交
212 213 214 215 216 217 218 219 220 221 222
        except StopIteration:
            self.loader = iter(self.dataloader)
            six.reraise(*sys.exc_info())

    def next(self):
        # python2 compatibility
        return self.__next__()


@register
class TrainReader(BaseDataLoader):
223 224
    __shared__ = ['num_classes']

Q
qingqing01 已提交
225 226 227 228 229 230
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=True,
                 drop_last=True,
231
                 num_classes=80,
232
                 collate_batch=True,
Q
qingqing01 已提交
233
                 **kwargs):
234 235 236
        super(TrainReader, self).__init__(sample_transforms, batch_transforms,
                                          batch_size, shuffle, drop_last,
                                          num_classes, collate_batch, **kwargs)
Q
qingqing01 已提交
237 238 239 240


@register
class EvalReader(BaseDataLoader):
241 242
    __shared__ = ['num_classes']

Q
qingqing01 已提交
243 244 245 246 247 248
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=True,
249
                 num_classes=80,
Q
qingqing01 已提交
250
                 **kwargs):
K
Kaipeng Deng 已提交
251 252
        super(EvalReader, self).__init__(sample_transforms, batch_transforms,
                                         batch_size, shuffle, drop_last,
253
                                         num_classes, **kwargs)
Q
qingqing01 已提交
254 255 256 257


@register
class TestReader(BaseDataLoader):
258 259
    __shared__ = ['num_classes']

Q
qingqing01 已提交
260 261 262 263 264 265
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
266
                 num_classes=80,
Q
qingqing01 已提交
267
                 **kwargs):
K
Kaipeng Deng 已提交
268 269
        super(TestReader, self).__init__(sample_transforms, batch_transforms,
                                         batch_size, shuffle, drop_last,
270
                                         num_classes, **kwargs)
G
George Ni 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286


@register
class EvalMOTReader(BaseDataLoader):
    __shared__ = ['num_classes']

    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 num_classes=1,
                 **kwargs):
        super(EvalMOTReader, self).__init__(sample_transforms, batch_transforms,
                                            batch_size, shuffle, drop_last,
287
                                            num_classes, **kwargs)
G
George Ni 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303


@register
class TestMOTReader(BaseDataLoader):
    __shared__ = ['num_classes']

    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 num_classes=1,
                 **kwargs):
        super(TestMOTReader, self).__init__(sample_transforms, batch_transforms,
                                            batch_size, shuffle, drop_last,
304
                                            num_classes, **kwargs)