infer.py 24.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import argparse
17
import time
18
import yaml
C
channings 已提交
19 20
import ast
from functools import reduce
21

22 23 24 25 26 27
from PIL import Image
import cv2
import numpy as np
import paddle.fluid as fluid
from visualize import visualize_box_mask

28 29 30 31 32
# Global dictionary
RESIZE_SCALE_SET = {
    'RCNN',
    'RetinaNet',
    'FCOS',
S
still-wait 已提交
33
    'SOLOv2',
34 35 36 37 38 39 40 41 42 43 44
}

SUPPORT_MODELS = {
    'YOLO',
    'SSD',
    'RetinaNet',
    'EfficientDet',
    'RCNN',
    'Face',
    'TTF',
    'FCOS',
S
still-wait 已提交
45
    'SOLOv2',
46 47
}

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

def decode_image(im_file, im_info):
    """read rgb image
    Args:
        im_file (str/np.ndarray): path of image/ np.ndarray read by cv2
        im_info (dict): info of image
    Returns:
        im (np.ndarray):  processed image (np.ndarray)
        im_info (dict): info of processed image
    """
    if isinstance(im_file, str):
        with open(im_file, 'rb') as f:
            im_read = f.read()
        data = np.frombuffer(im_read, dtype='uint8')
        im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
        im_info['origin_shape'] = im.shape[:2]
        im_info['resize_shape'] = im.shape[:2]
    else:
        im = im_file
        im_info['origin_shape'] = im.shape[:2]
        im_info['resize_shape'] = im.shape[:2]
    return im, im_info


class Resize(object):
    """resize image by target_size and max_size
    Args:
        arch (str): model type
        target_size (int): the target size of image
        max_size (int): the max size of image
        use_cv2 (bool): whether us cv2
        image_shape (list): input shape of model
        interp (int): method of resize
    """

    def __init__(self,
                 arch,
                 target_size,
                 max_size,
                 use_cv2=True,
                 image_shape=None,
S
still-wait 已提交
90 91
                 interp=cv2.INTER_LINEAR,
                 resize_box=False):
92 93
        self.target_size = target_size
        self.max_size = max_size
94
        self.image_shape = image_shape
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        self.arch = arch
        self.use_cv2 = use_cv2
        self.interp = interp

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im_channel = im.shape[2]
        im_scale_x, im_scale_y = self.generate_scale(im)
        if self.use_cv2:
            im = cv2.resize(
                im,
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
        else:
            resize_w = int(im_scale_x * float(im.shape[1]))
            resize_h = int(im_scale_y * float(im.shape[0]))
            if self.max_size != 0:
                raise TypeError(
                    'If you set max_size to cap the maximum size of image,'
                    'please set use_cv2 to True to resize the image.')
            im = im.astype('uint8')
            im = Image.fromarray(im)
            im = im.resize((int(resize_w), int(resize_h)), self.interp)
            im = np.array(im)

        # padding im when image_shape fixed by infer_cfg.yml
        if self.max_size != 0 and self.image_shape is not None:
            padding_im = np.zeros(
                (self.max_size, self.max_size, im_channel), dtype=np.float32)
            im_h, im_w = im.shape[:2]
            padding_im[:im_h, :im_w, :] = im
            im = padding_im

W
wangguanzhong 已提交
138
        im_info['scale'] = [im_scale_x, im_scale_y]
139 140 141 142 143 144 145 146
        im_info['resize_shape'] = im.shape[:2]
        return im, im_info

    def generate_scale(self, im):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
        Returns:
147 148
            im_scale_x: the resize ratio of X
            im_scale_y: the resize ratio of Y
149 150 151
        """
        origin_shape = im.shape[:2]
        im_c = im.shape[2]
152
        if self.max_size != 0 and self.arch in RESIZE_SCALE_SET:
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
            im_size_min = np.min(origin_shape[0:2])
            im_size_max = np.max(origin_shape[0:2])
            im_scale = float(self.target_size) / float(im_size_min)
            if np.round(im_scale * im_size_max) > self.max_size:
                im_scale = float(self.max_size) / float(im_size_max)
            im_scale_x = im_scale
            im_scale_y = im_scale
        else:
            im_scale_x = float(self.target_size) / float(origin_shape[1])
            im_scale_y = float(self.target_size) / float(origin_shape[0])
        return im_scale_x, im_scale_y


class Normalize(object):
    """normalize image
    Args:
        mean (list): im - mean
        std (list): im / std
        is_scale (bool): whether need im / 255
        is_channel_first (bool): if True: image shape is CHW, else: HWC
    """

    def __init__(self, mean, std, is_scale=True, is_channel_first=False):
        self.mean = mean
        self.std = std
        self.is_scale = is_scale
        self.is_channel_first = is_channel_first

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im = im.astype(np.float32, copy=False)
        if self.is_channel_first:
            mean = np.array(self.mean)[:, np.newaxis, np.newaxis]
            std = np.array(self.std)[:, np.newaxis, np.newaxis]
        else:
            mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
            std = np.array(self.std)[np.newaxis, np.newaxis, :]
        if self.is_scale:
            im = im / 255.0
        im -= mean
        im /= std
        return im, im_info


class Permute(object):
    """permute image
    Args:
        to_bgr (bool): whether convert RGB to BGR 
        channel_first (bool): whether convert HWC to CHW
    """

    def __init__(self, to_bgr=False, channel_first=True):
        self.to_bgr = to_bgr
        self.channel_first = channel_first

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        if self.channel_first:
            im = im.transpose((2, 0, 1)).copy()
        if self.to_bgr:
            im = im[[2, 1, 0], :, :]
        return im, im_info


class PadStride(object):
    """ padding image for model with FPN 
    Args:
        stride (bool): model with FPN need image shape % stride == 0 
    """

    def __init__(self, stride=0):
        self.coarsest_stride = stride

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        coarsest_stride = self.coarsest_stride
        if coarsest_stride == 0:
            return im
        im_c, im_h, im_w = im.shape
        pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
        pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
        padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = im
S
still-wait 已提交
257
        im_info['pad_shape'] = padding_im.shape[1:]
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
        return padding_im, im_info


def create_inputs(im, im_info, model_arch='YOLO'):
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
        model_arch (str): model type
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
    inputs['image'] = im
    origin_shape = list(im_info['origin_shape'])
    resize_shape = list(im_info['resize_shape'])
S
still-wait 已提交
274 275
    pad_shape = list(im_info['pad_shape']) if 'pad_shape' in im_info else list(
        im_info['resize_shape'])
W
wangguanzhong 已提交
276
    scale_x, scale_y = im_info['scale']
277 278 279
    if 'YOLO' in model_arch:
        im_size = np.array([origin_shape]).astype('int32')
        inputs['im_size'] = im_size
S
still-wait 已提交
280
    elif 'RetinaNet' in model_arch or 'EfficientDet' in model_arch:
W
wangguanzhong 已提交
281
        scale = scale_x
S
still-wait 已提交
282
        im_info = np.array([pad_shape + [scale]]).astype('float32')
283
        inputs['im_info'] = im_info
284
    elif ('RCNN' in model_arch) or ('FCOS' in model_arch):
W
wangguanzhong 已提交
285
        scale = scale_x
S
still-wait 已提交
286
        im_info = np.array([pad_shape + [scale]]).astype('float32')
287 288 289
        im_shape = np.array([origin_shape + [1.]]).astype('float32')
        inputs['im_info'] = im_info
        inputs['im_shape'] = im_shape
W
wangguanzhong 已提交
290 291 292
    elif 'TTF' in model_arch:
        scale_factor = np.array([scale_x, scale_y] * 2).astype('float32')
        inputs['scale_factor'] = scale_factor
S
still-wait 已提交
293 294 295 296
    elif 'SOLOv2' in model_arch:
        scale = scale_x
        im_info = np.array([resize_shape + [scale]]).astype('float32')
        inputs['im_info'] = im_info
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    return inputs


class Config():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.use_python_inference = yml_conf['use_python_inference']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.mask_resolution = None
        if 'mask_resolution' in yml_conf:
            self.mask_resolution = yml_conf['mask_resolution']
C
channings 已提交
320
        self.print_config()
321 322 323 324 325 326

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
327
        for support_model in SUPPORT_MODELS:
328 329
            if support_model in yml_conf['arch']:
                return True
W
wangguanzhong 已提交
330
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
331
            'arch'], SUPPORT_MODELS))
332

C
channings 已提交
333 334 335 336 337 338 339 340 341
    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: %s' % ('Use Padddle Executor', self.use_python_inference))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')

342 343 344 345 346 347

def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
                   use_gpu=False,
                   min_subgraph_size=3):
348
    """set AnalysisConfig, generate AnalysisPredictor
349 350 351 352 353 354
    Args:
        model_dir (str): root path of __model__ and __params__
        use_gpu (bool): whether use gpu
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
355
        ValueError: predict by TensorRT need use_gpu == True.
356
    """
357
    if not use_gpu and not run_mode == 'fluid':
358 359 360
        raise ValueError(
            "Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
            .format(run_mode, use_gpu))
W
wangguanzhong 已提交
361 362 363
    if run_mode == 'trt_int8':
        raise ValueError("TensorRT int8 mode is not supported now, "
                         "please use trt_fp32 or trt_fp16 instead.")
364
    precision_map = {
C
channings 已提交
365
        'trt_int8': fluid.core.AnalysisConfig.Precision.Int8,
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
        'trt_fp32': fluid.core.AnalysisConfig.Precision.Float32,
        'trt_fp16': fluid.core.AnalysisConfig.Precision.Half
    }
    config = fluid.core.AnalysisConfig(
        os.path.join(model_dir, '__model__'),
        os.path.join(model_dir, '__params__'))
    if use_gpu:
        # initial GPU memory(M), device ID
        config.enable_use_gpu(100, 0)
        # optimize graph and fuse op
        config.switch_ir_optim(True)
    else:
        config.disable_gpu()

    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
382
            workspace_size=1 << 10,
383 384 385 386
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
W
wangguanzhong 已提交
387
            use_calib_mode=False)
388 389 390 391 392

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
393
    # disable feed, fetch OP, needed by zero_copy_run
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    config.switch_use_feed_fetch_ops(False)
    predictor = fluid.core.create_paddle_predictor(config)
    return predictor


def load_executor(model_dir, use_gpu=False):
    if use_gpu:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    program, feed_names, fetch_targets = fluid.io.load_inference_model(
        dirname=model_dir,
        executor=exe,
        model_filename='__model__',
        params_filename='__params__')
    return exe, program, fetch_targets


def visualize(image_file,
              results,
              labels,
              mask_resolution=14,
S
still-wait 已提交
417 418
              output_dir='output/',
              threshold=0.5):
419 420
    # visualize the predict result
    im = visualize_box_mask(
S
still-wait 已提交
421 422 423 424 425
        image_file,
        results,
        labels,
        mask_resolution=mask_resolution,
        threshold=threshold)
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    img_name = os.path.split(image_file)[-1]
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    out_path = os.path.join(output_dir, img_name)
    im.save(out_path, quality=95)
    print("save result to: " + out_path)


class Detector():
    """
    Args:
        model_dir (str): root path of __model__, __params__ and infer_cfg.yml
        use_gpu (bool): whether use gpu
    """

441 442 443 444 445
    def __init__(self,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
                 threshold=0.5):
446 447 448 449 450 451 452
        self.config = Config(model_dir)
        if self.config.use_python_inference:
            self.executor, self.program, self.fecth_targets = load_executor(
                model_dir, use_gpu=use_gpu)
        else:
            self.predictor = load_predictor(
                model_dir,
453
                run_mode=run_mode,
454 455 456 457 458 459 460 461 462 463 464 465
                min_subgraph_size=self.config.min_subgraph_size,
                use_gpu=use_gpu)
        self.preprocess_ops = []
        for op_info in self.config.preprocess_infos:
            op_type = op_info.pop('type')
            if op_type == 'Resize':
                op_info['arch'] = self.config.arch
            self.preprocess_ops.append(eval(op_type)(**op_info))

    def preprocess(self, im):
        # process image by preprocess_ops
        im_info = {
466
            'scale': [1., 1.],
467 468 469 470 471 472 473 474 475 476 477 478 479
            'origin_shape': None,
            'resize_shape': None,
        }
        im, im_info = decode_image(im, im_info)
        for operator in self.preprocess_ops:
            im, im_info = operator(im, im_info)
        im = np.array((im, )).astype('float32')
        inputs = create_inputs(im, im_info, self.config.arch)
        return inputs, im_info

    def postprocess(self, np_boxes, np_masks, im_info, threshold=0.5):
        # postprocess output of predictor
        results = {}
480
        if self.config.arch in ['SSD', 'Face']:
481 482 483 484 485
            w, h = im_info['origin_shape']
            np_boxes[:, 2] *= h
            np_boxes[:, 3] *= w
            np_boxes[:, 4] *= h
            np_boxes[:, 5] *= w
W
wangguanzhong 已提交
486
        expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
487 488
        np_boxes = np_boxes[expect_boxes, :]
        for box in np_boxes:
J
Jack Zhou 已提交
489
            print('class_id:{:d}, confidence:{:.4f},'
490 491 492 493 494 495 496 497 498
                  'left_top:[{:.2f},{:.2f}],'
                  ' right_bottom:[{:.2f},{:.2f}]'.format(
                      int(box[0]), box[1], box[2], box[3], box[4], box[5]))
        results['boxes'] = np_boxes
        if np_masks is not None:
            np_masks = np_masks[expect_boxes, :, :, :]
            results['masks'] = np_masks
        return results

K
Kaipeng Deng 已提交
499 500 501 502 503 504
    def predict(self,
                image,
                threshold=0.5,
                warmup=0,
                repeats=1,
                run_benchmark=False):
505 506 507 508 509
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
510
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
511
                            matix element:[class, score, x_min, y_min, x_max, y_max]
512 513
                            MaskRCNN's results include 'masks': np.ndarray:
                            shape:[N, class_num, mask_resolution, mask_resolution]
514 515 516 517
        '''
        inputs, im_info = self.preprocess(image)
        np_boxes, np_masks = None, None
        if self.config.use_python_inference:
C
channings 已提交
518 519 520 521 522
            for i in range(warmup):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
523
            t1 = time.time()
C
channings 已提交
524 525 526 527 528
            for i in range(repeats):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
529
            t2 = time.time()
C
channings 已提交
530
            ms = (t2 - t1) * 1000.0 / repeats
531 532
            print("Inference: {} ms per batch image".format(ms))

S
still-wait 已提交
533 534 535 536 537
            if self.config.arch == 'SOLOv2':
                return dict(
                    segm=np.array(outs[2]),
                    label=np.array(outs[0]),
                    score=np.array(outs[1]))
538 539
            np_boxes = np.array(outs[0])
            if self.config.mask_resolution is not None:
540
                np_masks = np.array(outs[1])
541 542
        else:
            input_names = self.predictor.get_input_names()
K
Kaipeng Deng 已提交
543
            for i in range(len(input_names)):
544 545
                input_tensor = self.predictor.get_input_tensor(input_names[i])
                input_tensor.copy_from_cpu(inputs[input_names[i]])
546

C
channings 已提交
547 548 549 550 551 552 553 554 555
            for i in range(warmup):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
                boxes_tensor = self.predictor.get_output_tensor(output_names[0])
                np_boxes = boxes_tensor.copy_to_cpu()
                if self.config.mask_resolution is not None:
                    masks_tensor = self.predictor.get_output_tensor(
                        output_names[1])
                    np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
556

C
channings 已提交
557 558 559 560
            t1 = time.time()
            for i in range(repeats):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
S
still-wait 已提交
561 562 563 564 565 566 567
                if self.config.arch == 'SOLOv2':
                    np_label = self.predictor.get_output_tensor(output_names[
                        0]).copy_to_cpu()
                    np_score = self.predictor.get_output_tensor(output_names[
                        1]).copy_to_cpu()
                    np_segms = self.predictor.get_output_tensor(output_names[
                        2]).copy_to_cpu()
C
channings 已提交
568 569 570 571 572 573 574 575
                boxes_tensor = self.predictor.get_output_tensor(output_names[0])
                np_boxes = boxes_tensor.copy_to_cpu()
                if self.config.mask_resolution is not None:
                    masks_tensor = self.predictor.get_output_tensor(
                        output_names[1])
                    np_masks = masks_tensor.copy_to_cpu()
            t2 = time.time()
            ms = (t2 - t1) * 1000.0 / repeats
W
wangguanzhong 已提交
576 577
            print("Inference: {} ms per batch image".format(ms))

K
Kaipeng Deng 已提交
578 579 580
        # do not perform postprocess in benchmark mode
        results = []
        if not run_benchmark:
S
still-wait 已提交
581 582 583
            if self.config.arch == 'SOLOv2':
                return dict(segm=np_segms, label=np_label, score=np_score)

K
Kaipeng Deng 已提交
584 585 586 587 588 589
            if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
                print('[WARNNING] No object detected.')
                results = {'boxes': np.array([])}
            else:
                results = self.postprocess(
                    np_boxes, np_masks, im_info, threshold=threshold)
C
channings 已提交
590

591 592 593 594
        return results


def predict_image():
595 596
    detector = Detector(
        FLAGS.model_dir, use_gpu=FLAGS.use_gpu, run_mode=FLAGS.run_mode)
C
channings 已提交
597 598
    if FLAGS.run_benchmark:
        detector.predict(
K
Kaipeng Deng 已提交
599 600 601 602 603
            FLAGS.image_file,
            FLAGS.threshold,
            warmup=100,
            repeats=100,
            run_benchmark=True)
C
channings 已提交
604 605 606 607 608 609 610
    else:
        results = detector.predict(FLAGS.image_file, FLAGS.threshold)
        visualize(
            FLAGS.image_file,
            results,
            detector.config.labels,
            mask_resolution=detector.config.mask_resolution,
S
still-wait 已提交
611 612
            output_dir=FLAGS.output_dir,
            threshold=FLAGS.threshold)
613 614


C
channings 已提交
615
def predict_video(camera_id):
616 617
    detector = Detector(
        FLAGS.model_dir, use_gpu=FLAGS.use_gpu, run_mode=FLAGS.run_mode)
C
channings 已提交
618 619 620 621 622 623
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
624 625 626
    fps = 30
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
K
Kaipeng Deng 已提交
627
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
628
    if not os.path.exists(FLAGS.output_dir):
629
        os.makedirs(FLAGS.output_dir)
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
        results = detector.predict(frame, FLAGS.threshold)
        im = visualize_box_mask(
            frame,
            results,
            detector.config.labels,
            mask_resolution=detector.config.mask_resolution)
        im = np.array(im)
        writer.write(im)
C
channings 已提交
647 648 649 650
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
651 652 653
    writer.release()


C
channings 已提交
654 655 656 657 658 659 660
def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


661 662 663 664 665 666 667
if __name__ == '__main__':
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
        help=("Directory include:'__model__', '__params__', "
668
              "'infer_cfg.yml', created by tools/export_model.py."),
669 670 671 672 673
        required=True)
    parser.add_argument(
        "--image_file", type=str, default='', help="Path of image file.")
    parser.add_argument(
        "--video_file", type=str, default='', help="Path of video file.")
C
channings 已提交
674 675 676 677 678
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
679 680 681 682
    parser.add_argument(
        "--run_mode",
        type=str,
        default='fluid',
W
wangguanzhong 已提交
683
        help="mode of running(fluid/trt_fp32/trt_fp16)")
684
    parser.add_argument(
C
channings 已提交
685 686 687 688 689 690 691 692 693
        "--use_gpu",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict with GPU.")
    parser.add_argument(
        "--run_benchmark",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict a image_file repeatedly for benchmark")
694 695 696 697 698 699 700 701 702
    parser.add_argument(
        "--threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")

    FLAGS = parser.parse_args()
C
channings 已提交
703 704
    print_arguments(FLAGS)

705 706 707 708
    if FLAGS.image_file != '' and FLAGS.video_file != '':
        assert "Cannot predict image and video at the same time"
    if FLAGS.image_file != '':
        predict_image()
C
channings 已提交
709 710
    if FLAGS.video_file != '' or FLAGS.camera_id != -1:
        predict_video(FLAGS.camera_id)