GETTING_STARTED.md 8.3 KB
Newer Older
Q
qingqing01 已提交
1 2
English | [简体中文](GETTING_STARTED_cn.md)

3 4
# Getting Started

K
Kaipeng Deng 已提交
5
For setting up the running environment, please refer to [installation
6 7 8
instructions](INSTALL.md).


W
wangguanzhong 已提交
9
## Training/Evaluation/Inference
10

W
wangguanzhong 已提交
11
PaddleDetection provides scripots for training, evalution and inference with various features according to different configure.
12 13

```bash
W
wangguanzhong 已提交
14
# training in single-GPU and multi-GPU. specify different GPU numbers by CUDA_VISIBLE_DEVICES
15
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
16
python tools/train.py -c configs/faster_rcnn_r50_1x.yml
W
wangguanzhong 已提交
17 18 19 20 21
# GPU evalution
export CUDA_VISIBLE_DEVICES=0
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml
# Inference
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_img=demo/000000570688.jpg
22 23
```

W
wangguanzhong 已提交
24
### Optional argument list
25

W
wangguanzhong 已提交
26
list below can be viewed by `--help`
27

W
wangguanzhong 已提交
28 29
|         FLAG             |  script supported  |    description    |     default     |      remark      |
| :----------------------: | :------------: | :---------------: | :--------------: | :-----------------: |
W
wangguanzhong 已提交
30
|          -c              |      ALL       |  Select config file  |  None  |  **The description of configure can refer to [CONFIG.md](../advanced_tutorials/CONFIG.md)** |
W
wangguanzhong 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43
|          -o              |      ALL       |  Set parameters in configure file  |  None  |  `-o` has higher priority to file configured by `-c`. Such as `-o use_gpu=False max_iter=10000`  |  
|   -r/--resume_checkpoint |     train      |  Checkpoint path for resuming training  |  None  |  `-r output/faster_rcnn_r50_1x/10000`  |
|        --eval            |     train      |  Whether to perform evaluation in training  |  False  |    |
|      --output_eval       |     train/eval |  json path in evalution  |  current path  |  `--output_eval ./json_result`  |
|       --fp16             |     train      |  Whether to enable mixed precision training  |  False  |  GPU training is required  |
|       --loss_scale       |     train      |  Loss scaling factor for mixed precision training  |  8.0  |  enable when `--fp16` is True  |  
|       --json_eval        |       eval     |  Whether to evaluate with already existed bbox.json or mask.json  |  False  |  json path is set in `--output_eval`  |
|       --output_dir       |      infer     |  Directory for storing the output visualization files  |  `./output`  |  `--output_dir output`  |
|    --draw_threshold      |      infer     |  Threshold to reserve the result for visualization  |  0.5  |  `--draw_threshold 0.7`  |
|      --infer_dir         |       infer     |  Directory for images to perform inference on  |  None  |    |
|      --infer_img         |       infer     |  Image path  |  None  |  higher priority over --infer_dir  |
|        --use_tb          |   train/infer   |  Whether to record the data with [tb-paddle](https://github.com/linshuliang/tb-paddle), so as to display in Tensorboard  |  False  |      |
|        --tb\_log_dir     |   train/infer   |  tb-paddle logging directory for image  |  train:`tb_log_dir/scalar` infer: `tb_log_dir/image`  |     |
44 45


W
wangguanzhong 已提交
46
## Examples
47

W
wangguanzhong 已提交
48
### Training
49 50 51

- Perform evaluation in training

W
wangguanzhong 已提交
52 53 54 55
  ```bash
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml --eval
  ```
56

W
wangguanzhong 已提交
57
  Perform training and evalution alternatively and evaluate at each snapshot_iter. Meanwhile, the best model with highest MAP is saved at each `snapshot_iter` which has the same path as `model_final`.
58

W
wangguanzhong 已提交
59
  If evaluation dataset is large, we suggest decreasing evaluation times or evaluating after training.
60

61 62
- Fine-tune other task

63 64 65 66 67 68 69 70 71 72 73 74
  When using pre-trained model to fine-tune other task, pretrain\_weights can be used directly. The parameters with different shape will be ignored automatically. For example:


  ```bash
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  # If the shape of parameters in program is different from pretrain_weights,
  # then PaddleDetection will not use such parameters.
  python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \
                           -o pretrain_weights=output/faster_rcnn_r50_1x/model_final \
  ```

  Besides, the name of parameters which need to ignore can be specified explicitly as well. Two methods can be used:
75

W
wangguanzhong 已提交
76 77
  1. The excluded pre-trained parameters can be set by `finetune_exclude_pretrained_params` in YAML config
  2. Set -o finetune\_exclude\_pretrained_params in the arguments.
78

W
wangguanzhong 已提交
79 80 81
  ```bash
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \
W
wangguanzhong 已提交
82
                           -o pretrain_weights=output/faster_rcnn_r50_1x/model_final \
W
wangguanzhong 已提交
83 84 85
                              finetune_exclude_pretrained_params = ['cls_score','bbox_pred']
  ```

K
Kaipeng Deng 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98
- Training YOLOv3 with fine grained YOLOv3 loss built by Paddle OPs in python

  In order to facilitate the redesign of YOLOv3 loss function, we also provide fine grained YOLOv3 loss function building in python code by common Paddle OPs instead of using `fluid.layers.yolov3_loss`,
  training YOLOv3 with python loss function as follows:

  ```bash
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  python -u tools/train.py -c configs/yolov3_darknet.yml \
                           -o use_fine_grained_loss=true
  ```

  Fine grained YOLOv3 loss code is defined in `ppdet/modeling/losses/yolo_loss.py`.

W
wangguanzhong 已提交
99 100
##### NOTES

W
wangguanzhong 已提交
101
- `CUDA_VISIBLE_DEVICES` can specify different gpu numbers. Such as: `export CUDA_VISIBLE_DEVICES=0,1,2,3`. GPU calculation rules can refer [FAQ](./FAQ.md)
W
wangguanzhong 已提交
102 103 104 105
- Dataset will be downloaded automatically and cached in `~/.cache/paddle/dataset` if not be found locally.
- Pretrained model is downloaded automatically and cached in `~/.cache/paddle/weights`.
- Checkpoints are saved in `output` by default, and can be revised from save_dir in configure files.
- RCNN models training on CPU is not supported on PaddlePaddle<=1.5.1 and will be fixed on later version.
106

W
wangguanzhong 已提交
107 108

### Mixed Precision Training
109 110 111 112 113 114 115 116 117 118 119 120 121 122

Mixed precision training can be enabled with `--fp16` flag. Currently Faster-FPN, Mask-FPN and Yolov3 have been verified to be working with little to no loss of precision (less than 0.2 mAP)

To speed up mixed precision training, it is recommended to train in multi-process mode, for example

```bash
python -m paddle.distributed.launch --selected_gpus 0,1,2,3,4,5,6,7 tools/train.py --fp16 -c configs/faster_rcnn_r50_fpn_1x.yml
```

If loss becomes `NaN` during training, try tweak the `--loss_scale` value. Please refer to the Nvidia [documentation](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#mptrain) on mixed precision training for details.

Also, please note mixed precision training currently requires changing `norm_type` from `affine_channel` to `bn`.


123

W
wangguanzhong 已提交
124
### Evaluation
125

W
wangguanzhong 已提交
126
- Evaluate by specified weights path and dataset path
127

W
wangguanzhong 已提交
128 129 130 131 132
  ```bash
  export CUDA_VISIBLE_DEVICES=0
  python -u tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
                          -o weights=https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar \
  ```
133

G
Guanghua Yu 已提交
134
  The path of model to be evaluted can be both local path and link in [MODEL_ZOO](../MODEL_ZOO_cn.md).
135

136
- Evaluate with json
W
wangguanzhong 已提交
137 138 139 140

  ```bash
  export CUDA_VISIBLE_DEVICES=0
  python tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
W
wangguanzhong 已提交
141 142
             --json_eval \
             -f evaluation/
W
wangguanzhong 已提交
143
  ```
144

W
wangguanzhong 已提交
145
  The json file must be named bbox.json or mask.json, placed in the `evaluation/` directory.
146 147 148

#### NOTES

149 150 151 152
- Multi-GPU evaluation for R-CNN and SSD models is not supported at the
moment, but it is a planned feature


W
wangguanzhong 已提交
153
### Inference
154 155

- Output specified directory && Set up threshold
156

W
wangguanzhong 已提交
157 158 159
  ```bash
  export CUDA_VISIBLE_DEVICES=0
  python tools/infer.py -c configs/faster_rcnn_r50_1x.yml \
160 161
                      --infer_img=demo/000000570688.jpg \
                      --output_dir=infer_output/ \
162
                      --draw_threshold=0.5 \
163 164
                      -o weights=output/faster_rcnn_r50_1x/model_final \
                      --use_tb=Ture
W
wangguanzhong 已提交
165 166 167 168
  ```

  `--draw_threshold` is an optional argument. Default is 0.5.
  Different thresholds will produce different results depending on the calculation of [NMS](https://ieeexplore.ieee.org/document/1699659).
169

170

W
wangguanzhong 已提交
171
- Export model
172

W
wangguanzhong 已提交
173
  ```bash
W
wangguanzhong 已提交
174 175 176 177
  python tools/export_model.py -c configs/faster_rcnn_r50_1x.yml \
                      --output_dir=inference_model \
                      -o weights=output/faster_rcnn_r50_1x/model_final \
                         FasterRCNNTestFeed.image_shape=[3,800,1333]
W
wangguanzhong 已提交
178
  ```
179

W
wangguanzhong 已提交
180
  Save inference model `tools/export_model.py`, which can be loaded by PaddlePaddle predict library.