tensor.py 16.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
Y
yuyang18 已提交
21
from layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
S
sneaxiy 已提交
34 35
    'argmin',
    'argmax',
36 37
    'ones',
    'zeros',
Y
Yu Yang 已提交
38 39 40
]


X
xuwei06 已提交
41
def create_tensor(dtype, name=None, persistable=False):
Y
Yu Yang 已提交
42
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
43 44
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
45 46


47 48
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
49
                     name=None,
50 51 52 53
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
54 55 56 57 58 59
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

60 61 62 63 64 65 66 67 68 69 70
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
71 72 73 74 75 76
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
77
    """
Q
Qiao Longfei 已提交
78
    helper = LayerHelper("create_parameter", **locals())
79
    if attr is None:
X
xuwei06 已提交
80
        attr = ParamAttr(name=name)
81 82 83 84
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


85 86 87 88 89 90 91
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
F
fengjiayi 已提交
92 93
    Create a new variable in the global block(block 0).

94 95
    Args:
        shape(list[int]): shape of the variable
F
fengjiayi 已提交
96 97 98 99 100 101 102 103 104 105
        value(float): the value of the variable. The new created 
                      variable will be filled with it.
        dtype(string): data type of the variable
        persistable(bool): if this variable is persistable. 
                           Default: False
        force_cpu(bool): force this variable to be on CPU. 
                         Default: False
        name(str|None): The name of the variable. If set to None the variable 
                        name will be generated automatically. 
                        Default: None
106 107 108

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
109 110 111 112 113 114

    Examples:
        .. code-block:: python

            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32', 
                                 persistable=True, force_cpu=True, name='new_var')
115
    """
Q
Qiao Longfei 已提交
116 117
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
F
fengjiayi 已提交
118
        dtype=dtype, shape=shape, persistable=persistable, name=name)
Q
Qiao Longfei 已提交
119
    helper.set_variable_initializer(
120 121
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
122 123 124
    return var


125
def cast(x, dtype):
Y
Yu Yang 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


141
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
142
    """
143 144 145
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
146
    and returns that as the output.
147 148 149 150

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
151 152
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
153 154 155 156 157 158

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
159 160
        
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
161 162 163 164 165 166 167 168 169 170 171
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


172
def sums(input, out=None):
F
fengjiayi 已提交
173 174
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
175 176 177 178 179
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
180
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
181
                             Default: None
K
kavyasrinet 已提交
182 183

    Returns:
F
fengjiayi 已提交
184
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
185 186

    Examples:
F
fengjiayi 已提交
187
        .. code-block:: python
K
kavyasrinet 已提交
188 189 190 191 192 193

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
194 195
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
196
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
197 198 199 200 201 202 203 204
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


205
def assign(input, output):
206 207 208 209 210 211
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
212
        input(Variable|numpy.ndarray): The source variable
213 214 215 216 217 218 219
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
220

221 222 223 224
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
225
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
226 227
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
228
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
229 230
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
231
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
232
            value_name = "fp32_values"
233
            values = [float(v) for v in input.flat]
234
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
235
            value_name = "int32_values"
236
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
237 238
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
239 240 241
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
242 243 244 245 246 247 248

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
249
                value_name: values
X
xuwei06 已提交
250 251 252 253
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
254 255 256
    return output


Q
QI JUN 已提交
257
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
258
    """
259 260
    **fill_constant**

261 262
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
263

264
    The attribute `stop_gradient` of the created tensor is set to True.
265 266

    Args:
267
        shape(tuple|list|None): Shape of the output tensor.
268
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
269 270
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
271
        force_cpu(True|False): data should be on CPU if set true.
272 273

    Returns:
274
        Variable: The tensor variable storing the output.
275 276 277 278 279

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
280
    """
281

Y
Yu Yang 已提交
282 283 284 285 286 287 288
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
289 290 291 292
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
293
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
294
        })
Y
Yu Yang 已提交
295 296 297 298
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
299
@templatedoc()
Y
Yu Yang 已提交
300 301 302 303 304
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
305
                                  output_dim_idx=0):
306
    """
Y
yuyang18 已提交
307
    ${comment}
308 309 310

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
311 312 313
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

314
    Args:
Y
yuyang18 已提交
315
        input(${input_type}): ${input_comment}.
316

Y
yuyang18 已提交
317
        shape(${shape_type}): ${shape_comment}.
318

Y
yuyang18 已提交
319 320 321
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
322

Y
yuyang18 已提交
323 324 325 326 327
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
328
        ${out_comment}.
329
    """
Y
Yu Yang 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
347 348 349 350 351 352 353 354 355 356 357
def argmin(x, axis=0):
    """
    **argmin**

    This function computes the indices of the min elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
358

S
sneaxiy 已提交
359 360
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
361

S
sneaxiy 已提交
362 363
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
364

S
sneaxiy 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
          out = fluid.layers.argmin(x=in, axis=0)
          out = fluid.layers.argmin(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_min", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

    This function computes the indices of the max elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
389

S
sneaxiy 已提交
390 391
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
392

S
sneaxiy 已提交
393 394
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
395

S
sneaxiy 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408
          out = fluid.layers.argmax(x=in, axis=0)
          out = fluid.layers.argmax(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_max", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yang Yu 已提交
409
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
410
    """
411 412 413 414 415 416 417 418 419
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
420
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
421 422 423 424 425 426 427 428

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
429 430 431 432
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
433
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
434
    """
435 436 437 438 439 440 441 442 443
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
444
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
445 446 447 448 449 450 451 452

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
453 454
    """
    return fill_constant(value=0.0, **locals())
455 456


F
fengjiayi 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
        axis(int|tuple|list): Axis that along which order of elements 
                    is reversed. If it is a tuple or a list, reversing 
                    will be apply on each axis in the tuple or list.  

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
516 517
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
518
        file_path(str): The file path where variables will be saved.
519
        overwrite(bool): Whether or not cover the given file when it has already
520 521
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})