tensor.py 13.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
Y
yuyang18 已提交
21
from layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33 34 35
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'ones',
    'zeros',
Y
Yu Yang 已提交
36 37 38
]


X
xuwei06 已提交
39
def create_tensor(dtype, name=None, persistable=False):
Y
Yu Yang 已提交
40
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
41 42
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
43 44


45 46
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
47
                     name=None,
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
    Create a parameter
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
        Parameter: the created parameter
    """
Q
Qiao Longfei 已提交
66
    helper = LayerHelper("create_parameter", **locals())
67
    if attr is None:
X
xuwei06 已提交
68
        attr = ParamAttr(name=name)
69 70 71 72
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
    Create a global variable. such as global_step
    Args:
        shape(list[int]): shape of the variable
        value(float): the value of the variable
        dtype(string): element type of the parameter
        persistable(bool): if this variable is persistable
        force_cpu(bool): force this variable to be on CPU

    Returns:
        Variable: the created Variable
    """
Q
Qiao Longfei 已提交
91 92 93 94
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
95 96
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
97 98 99
    return var


100
def cast(x, dtype):
Y
Yu Yang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


116
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
117
    """
118 119 120
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
121
    and returns that as the output.
122 123 124 125

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
126 127
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
128 129 130 131 132 133 134

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
135 136 137 138 139 140 141 142 143 144 145
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


146
def sums(input, out=None):
K
kavyasrinet 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    """This function performs the sum operation on the input and returns the
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.

    Returns:
        Variable: The tensor type variable that has the sum of input
                  written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
166 167
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
168
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
169 170 171 172 173 174 175 176
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


177
def assign(input, output):
178 179 180 181 182 183
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
184
        input(Variable|numpy.ndarray): The source variable
185 186 187 188 189 190 191 192 193 194 195
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
196
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
197 198
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
199
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
200 201
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
202
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
203
            value_name = "fp32_values"
204
            values = [float(v) for v in input.flat]
205
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
206
            value_name = "int32_values"
207
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
208 209
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
210 211 212
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
213 214 215 216 217 218 219

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
220
                value_name: values
X
xuwei06 已提交
221 222 223 224
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
225 226 227
    return output


Q
QI JUN 已提交
228
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
229
    """
230 231
    **fill_constant**

232 233
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
234

235
    The attribute `stop_gradient` of the created tensor is set to True.
236 237

    Args:
238
        shape(tuple|list|None): Shape of the output tensor.
239
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
240 241
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
242
        force_cpu(True|False): data should be on CPU if set true.
243 244

    Returns:
245
        Variable: The tensor variable storing the output.
246 247 248 249 250

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
251
    """
252

Y
Yu Yang 已提交
253 254 255 256 257 258 259
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
260 261 262 263
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
264
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
265
        })
Y
Yu Yang 已提交
266 267 268 269
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
270
@templatedoc()
Y
Yu Yang 已提交
271 272 273 274 275
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
276
                                  output_dim_idx=0):
277
    """
Y
yuyang18 已提交
278
    ${comment}
279 280 281

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
282 283 284
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

285
    Args:
Y
yuyang18 已提交
286
        input(${input_type}): ${input_comment}.
287

Y
yuyang18 已提交
288
        shape(${shape_type}): ${shape_comment}.
289

Y
yuyang18 已提交
290 291 292
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
293

Y
yuyang18 已提交
294 295 296 297 298 299
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
        ${out_comment}
300
    """
Y
Yu Yang 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


Y
Yang Yu 已提交
318
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
319
    """
320 321 322 323 324 325 326 327 328
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
329
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
330 331 332 333 334 335 336 337

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
338 339 340 341
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
342
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
343
    """
344 345 346 347 348 349 350 351 352
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
353
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
354 355 356 357 358 359 360 361

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
362 363
    """
    return fill_constant(value=0.0, **locals())
364 365


F
fengjiayi 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
        axis(int|tuple|list): Axis that along which order of elements 
                    is reversed. If it is a tuple or a list, reversing 
                    will be apply on each axis in the tuple or list.  

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
        x(list): A list of Tensor/LoDTensor to be saved together in a single file.
        file_path(str): The file path where variables will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})