README.md 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
# Mobile Model Zoo


## Models

This directory contains models optimized for mobile applications, at present the following models included:

| Backbone                 | Architecture              | Input | Image/gpu <sup>1</sup> | Lr schd       | Box AP | Download <sup>2</sup> |
|--------------------------|---------------------------|-------|------------------------|---------------|--------|-----------------------|
| MobileNetV3 Small        | SSDLite                   | 320   | 64                     | 400K (cosine) | 16.6   | [Link](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_small.tar.gz) |
| MobileNetV3 Large        | SSDLite                   | 320   | 64                     | 400K (cosine) | 22.8   | [Link](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_large.tar.gz) |
| MobileNetV3 Large w/ FPN | Cascade RCNN              | 320   | 2                      | 500k (cosine) | 25.0   | [Link](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_320.tar.gz) |
| MobileNetV3 Large w/ FPN | Cascade RCNN              | 640   | 2                      | 500k (cosine) | 30.2   | [Link](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_640.tar.gz) |
| MobileNetV3 Large        | YOLOv3                    | 320   | 8                      | 500K          | 27.1   | [Link](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.tar.gz) |
| MobileNetV3 Large        | YOLOv3 Prune <sup>3</sup> | 320   | 8                      | -             | 24.6   | [Link](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3_prune86_FPGM_320.tar.gz) |

**Notes**:

-   <a name="gpu">[1]</a> All models are trained on 8 GPUs.
-   <a name="tarball">[2]</a> Each tarball contains the following files
    -  model weight file (`.pdparams` or `.tar`)
    -  inference model files (`__model__` and `__params__`)
    -  Paddle-Lite model file (`.nb`)
-   <a name="prune">[3]</a> See the note section on how YOLO head is pruned


## Benchmarks Results

-   Models are benched on following chipsets with [Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite) 2.6 (to be released)
    -   Qualcomm Snapdragon 625
    -   Qualcomm Snapdragon 835
    -   Qualcomm Snapdragon 845
    -   Qualcomm Snapdragon 855
    -   HiSilicon Kirin 970
    -   HiSilicon Kirin 980
-   With 1 CPU thread (latency numbers are in ms)

    |                  | SD625   | SD835   | SD845   | SD855   | Kirin 970 | Kirin 980 |
    |------------------|---------|---------|---------|---------|-----------|-----------|
    | SSDLite Large    | 289.071 | 134.408 | 91.933  | 48.2206 | 144.914   | 55.1186   |
    | SSDLite Small    | 122.932 | 57.1914 | 41.003  | 22.0694 | 61.5468   | 25.2106   |
    | YOLOv3 baseline  | 1082.5  | 435.77  | 317.189 | 155.948 | 536.987   | 178.999   |
    | YOLOv3 prune     | 253.98  | 131.279 | 89.4124 | 48.2856 | 122.732   | 55.8626   |
    | Cascade RCNN 320 | 286.526 | 125.635 | 87.404  | 46.184  | 149.179   | 52.9994   |
    | Cascade RCNN 640 | 1115.66 | 495.926 | 351.361 | 189.722 | 573.558   | 207.917   |
-   With 4 CPU threads (latency numbers are in ms)

    |                  | SD625   | SD835   | SD845   | SD855   | Kirin 970 | Kirin 980 |
    |------------------|---------|---------|---------|---------|-----------|-----------|
    | SSDLite Large    | 107.535 | 51.1382 | 34.6392 | 20.4978 | 50.5598   | 24.5318   |
    | SSDLite Small    | 51.5704 | 24.5156 | 18.5486 | 11.4218 | 24.9946   | 16.7158   |
    | YOLOv3 baseline  | 413.486 | 184.248 | 133.624 | 75.7354 | 202.263   | 126.435   |
    | YOLOv3 prune     | 98.5472 | 53.6228 | 34.4306 | 21.3112 | 44.0722   | 31.201    |
    | Cascade RCNN 320 | 131.515 | 59.6026 | 39.4338 | 23.5802 | 58.5046   | 36.9486   |
    | Cascade RCNN 640 | 473.083 | 224.543 | 156.205 | 100.686 | 231.108   | 138.391   |


## Notes on YOLOv3 pruning

We pruned the YOLO-head and distill the pruned model with YOLOv3-ResNet34 as the teacher, which has a higher mAP on COCO (31.4 with 320\*320 input).

The following configurations can be used for pruning:

-   Prune with fixed ratio, overall prune ratios is 86%

    ```shell
    --pruned_params="yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights,yolo_block.0.1.1.conv.weights,yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.0.0.conv.weights,yolo_block.1.0.1.conv.weights,yolo_block.1.1.0.conv.weights,yolo_block.1.1.1.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights,yolo_block.2.0.0.conv.weights,yolo_block.2.0.1.conv.weights,yolo_block.2.1.0.conv.weights,yolo_block.2.1.1.conv.weights,yolo_block.2.2.conv.weights,yolo_block.2.tip.conv.weights" \
    --pruned_ratios="0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.875,0.875,0.875,0.875,0.875,0.875"
    ```
-   Prune filters using [FPGM](https://arxiv.org/abs/1811.00250) algorithm:

    ```shell
    --prune_criterion=geometry_median
    ```


## Upcoming

-   [ ] More models configurations
-   [ ] Quantized models