# Mobile Model Zoo ## Models This directory contains models optimized for mobile applications, at present the following models included: | Backbone | Architecture | Input | Image/gpu 1 | Lr schd | Box AP | Download 2 | |--------------------------|---------------------------|-------|------------------------|---------------|--------|-----------------------| | MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_small.tar.gz) | | MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v3_large.tar.gz) | | MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_320.tar.gz) | | MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_mobilenetv3_fpn_640.tar.gz) | | MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.tar.gz) | | MobileNetV3 Large | YOLOv3 Prune 3 | 320 | 8 | - | 24.6 | [Link](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3_prune86_FPGM_320.tar.gz) | **Notes**: - [1] All models are trained on 8 GPUs. - [2] Each tarball contains the following files - model weight file (`.pdparams` or `.tar`) - inference model files (`__model__` and `__params__`) - Paddle-Lite model file (`.nb`) - [3] See the note section on how YOLO head is pruned ## Benchmarks Results - Models are benched on following chipsets with [Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite) 2.6 (to be released) - Qualcomm Snapdragon 625 - Qualcomm Snapdragon 835 - Qualcomm Snapdragon 845 - Qualcomm Snapdragon 855 - HiSilicon Kirin 970 - HiSilicon Kirin 980 - With 1 CPU thread (latency numbers are in ms) | | SD625 | SD835 | SD845 | SD855 | Kirin 970 | Kirin 980 | |------------------|---------|---------|---------|---------|-----------|-----------| | SSDLite Large | 289.071 | 134.408 | 91.933 | 48.2206 | 144.914 | 55.1186 | | SSDLite Small | 122.932 | 57.1914 | 41.003 | 22.0694 | 61.5468 | 25.2106 | | YOLOv3 baseline | 1082.5 | 435.77 | 317.189 | 155.948 | 536.987 | 178.999 | | YOLOv3 prune | 253.98 | 131.279 | 89.4124 | 48.2856 | 122.732 | 55.8626 | | Cascade RCNN 320 | 286.526 | 125.635 | 87.404 | 46.184 | 149.179 | 52.9994 | | Cascade RCNN 640 | 1115.66 | 495.926 | 351.361 | 189.722 | 573.558 | 207.917 | - With 4 CPU threads (latency numbers are in ms) | | SD625 | SD835 | SD845 | SD855 | Kirin 970 | Kirin 980 | |------------------|---------|---------|---------|---------|-----------|-----------| | SSDLite Large | 107.535 | 51.1382 | 34.6392 | 20.4978 | 50.5598 | 24.5318 | | SSDLite Small | 51.5704 | 24.5156 | 18.5486 | 11.4218 | 24.9946 | 16.7158 | | YOLOv3 baseline | 413.486 | 184.248 | 133.624 | 75.7354 | 202.263 | 126.435 | | YOLOv3 prune | 98.5472 | 53.6228 | 34.4306 | 21.3112 | 44.0722 | 31.201 | | Cascade RCNN 320 | 131.515 | 59.6026 | 39.4338 | 23.5802 | 58.5046 | 36.9486 | | Cascade RCNN 640 | 473.083 | 224.543 | 156.205 | 100.686 | 231.108 | 138.391 | ## Notes on YOLOv3 pruning We pruned the YOLO-head and distill the pruned model with YOLOv3-ResNet34 as the teacher, which has a higher mAP on COCO (31.4 with 320\*320 input). The following configurations can be used for pruning: - Prune with fixed ratio, overall prune ratios is 86% ```shell --pruned_params="yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights,yolo_block.0.1.1.conv.weights,yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.0.0.conv.weights,yolo_block.1.0.1.conv.weights,yolo_block.1.1.0.conv.weights,yolo_block.1.1.1.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights,yolo_block.2.0.0.conv.weights,yolo_block.2.0.1.conv.weights,yolo_block.2.1.0.conv.weights,yolo_block.2.1.1.conv.weights,yolo_block.2.2.conv.weights,yolo_block.2.tip.conv.weights" \ --pruned_ratios="0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.875,0.875,0.875,0.875,0.875,0.875" ``` - Prune filters using [FPGM](https://arxiv.org/abs/1811.00250) algorithm: ```shell --prune_criterion=geometry_median ``` ## Upcoming - [ ] More models configurations - [ ] Quantized models