pipe_utils.py 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import os
import ast
import argparse
import glob
import yaml
import copy
import numpy as np

from python.keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--config",
        type=str,
        default=None,
        help=("Path of configure"),
        required=True)
    parser.add_argument(
        "--image_file", type=str, default=None, help="Path of image file.")
    parser.add_argument(
        "--image_dir",
        type=str,
        default=None,
        help="Dir of image file, `image_file` has a higher priority.")
    parser.add_argument(
        "--video_file",
        type=str,
        default=None,
        help="Path of video file, `video_file` or `camera_id` has a highest priority."
    )
Z
zhiboniu 已提交
48 49 50 51 52
    parser.add_argument(
        "--video_dir",
        type=str,
        default=None,
        help="Dir of video file, `video_file` has a higher priority.")
W
wangguanzhong 已提交
53 54
    parser.add_argument(
        "--model_dir", nargs='*', help="set model dir in pipeline")
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")
    parser.add_argument(
        "--run_mode",
        type=str,
        default='paddle',
        help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)")
    parser.add_argument(
        "--device",
        type=str,
        default='cpu',
        help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
    )
    parser.add_argument(
        "--enable_mkldnn",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn with CPU.")
    parser.add_argument(
        "--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
    parser.add_argument(
        "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
    parser.add_argument(
        "--trt_max_shape",
        type=int,
        default=1280,
        help="max_shape for TensorRT.")
    parser.add_argument(
        "--trt_opt_shape",
        type=int,
        default=640,
        help="opt_shape for TensorRT.")
    parser.add_argument(
        "--trt_calib_mode",
        type=bool,
        default=False,
        help="If the model is produced by TRT offline quantitative "
        "calibration, trt_calib_mode need to set True.")
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    parser.add_argument(
        "--do_entrance_counting",
        action='store_true',
        help="Whether counting the numbers of identifiers entering "
        "or getting out from the entrance. Note that only support one-class"
        "counting, multi-class counting is coming soon.")
    parser.add_argument(
        "--secs_interval",
        type=int,
        default=2,
        help="The seconds interval to count after tracking")
    parser.add_argument(
        "--draw_center_traj",
        action='store_true',
        help="Whether drawing the trajectory of center")
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    return parser


class Times(object):
    def __init__(self):
        self.time = 0.
        # start time
        self.st = 0.
        # end time
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, repeats=1, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += (self.et - self.st) / repeats
        else:
            self.time = (self.et - self.st) / repeats

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class PipeTimer(Times):
    def __init__(self):
        super(PipeTimer, self).__init__()
        self.total_time = Times()
        self.module_time = {
            'det': Times(),
            'mot': Times(),
            'attr': Times(),
            'kpt': Times(),
Z
zhiboniu 已提交
155
            'skeleton_action': Times(),
Z
zhiboniu 已提交
156
            'reid': Times()
157 158 159
        }
        self.img_num = 0

160
    def get_total_time(self):
161 162
        total_time = self.total_time.value()
        total_time = round(total_time, 4)
163 164 165 166 167 168 169 170
        average_latency = total_time / max(1, self.img_num)
        qps = 0
        if total_time > 0:
            qps = 1 / average_latency
        return total_time, average_latency, qps

    def info(self):
        total_time, average_latency, qps = self.get_total_time()
171 172 173 174 175 176 177 178 179 180 181
        print("------------------ Inference Time Info ----------------------")
        print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
                                                       self.img_num))

        for k, v in self.module_time.items():
            v_time = round(v.value(), 4)
            if v_time > 0:
                print("{} time(ms): {}".format(k, v_time * 1000))

        print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
            average_latency * 1000, qps))
182
        return qps
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

    def report(self, average=False):
        dic = {}
        dic['total'] = round(self.total_time.value() / max(1, self.img_num),
                             4) if average else self.total_time.value()
        dic['det'] = round(self.module_time['det'].value() /
                           max(1, self.img_num),
                           4) if average else self.module_time['det'].value()
        dic['mot'] = round(self.module_time['mot'].value() /
                           max(1, self.img_num),
                           4) if average else self.module_time['mot'].value()
        dic['attr'] = round(self.module_time['attr'].value() /
                            max(1, self.img_num),
                            4) if average else self.module_time['attr'].value()
        dic['kpt'] = round(self.module_time['kpt'].value() /
                           max(1, self.img_num),
                           4) if average else self.module_time['kpt'].value()
Z
zhiboniu 已提交
200 201 202
        dic['skeleton_action'] = round(
            self.module_time['skeleton_action'].value() / max(1, self.img_num),
            4) if average else self.module_time['skeleton_action'].value()
203 204 205 206 207

        dic['img_num'] = self.img_num
        return dic


W
wangguanzhong 已提交
208 209
def merge_model_dir(args, model_dir):
    # set --model_dir DET=ppyoloe/ to overwrite the model_dir in config file
Z
zhiboniu 已提交
210
    task_set = ['DET', 'ATTR', 'MOT', 'KPT', 'SKELETON_ACTION', 'REID']
W
wangguanzhong 已提交
211 212 213 214 215 216 217 218 219 220 221 222
    if not model_dir:
        return args
    for md in model_dir:
        md = md.strip()
        k, v = md.split('=', 1)
        k_upper = k.upper()
        assert k_upper in task_set, 'Illegal type of task, expect task are: {}, but received {}'.format(
            task_set, k)
        args[k_upper].update({'model_dir': v})
    return args


223 224 225 226 227 228 229 230 231 232 233 234 235 236
def merge_cfg(args):
    with open(args.config) as f:
        pred_config = yaml.safe_load(f)

    def merge(cfg, arg):
        merge_cfg = copy.deepcopy(cfg)
        for k, v in cfg.items():
            if k in arg:
                merge_cfg[k] = arg[k]
            else:
                if isinstance(v, dict):
                    merge_cfg[k] = merge(v, arg)
        return merge_cfg

W
wangguanzhong 已提交
237 238 239 240
    args_dict = vars(args)
    model_dir = args_dict.pop('model_dir')
    pred_config = merge_model_dir(pred_config, model_dir)
    pred_config = merge(pred_config, args_dict)
241 242 243 244 245
    return pred_config


def print_arguments(cfg):
    print('-----------  Running Arguments -----------')
W
wangguanzhong 已提交
246 247
    buffer = yaml.dump(cfg)
    print(buffer)
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    print('------------------------------------------')


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


Z
zhiboniu 已提交
282
def crop_image_with_det(batch_input, det_res, thresh=0.3):
283 284 285 286 287 288 289
    boxes = det_res['boxes']
    score = det_res['boxes'][:, 1]
    boxes_num = det_res['boxes_num']
    start_idx = 0
    crop_res = []
    for b_id, input in enumerate(batch_input):
        boxes_num_i = boxes_num[b_id]
290 291
        if boxes_num_i == 0:
            continue
292 293 294
        boxes_i = boxes[start_idx:start_idx + boxes_num_i, :]
        score_i = score[start_idx:start_idx + boxes_num_i]
        res = []
Z
zhiboniu 已提交
295 296 297 298 299
        for box, s in zip(boxes_i, score_i):
            if s > thresh:
                crop_image, new_box, ori_box = expand_crop(input, box)
                if crop_image is not None:
                    res.append(crop_image)
300 301 302 303
        crop_res.append(res)
    return crop_res


Z
zhiboniu 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317
def normal_crop(image, rect):
    imgh, imgw, c = image.shape
    label, conf, xmin, ymin, xmax, ymax = [int(x) for x in rect.tolist()]
    org_rect = [xmin, ymin, xmax, ymax]
    if label != 0:
        return None, None, None
    xmin = max(0, xmin)
    ymin = max(0, ymin)
    xmax = min(imgw, xmax)
    ymax = min(imgh, ymax)
    return image[ymin:ymax, xmin:xmax, :], [xmin, ymin, xmax, ymax], org_rect


def crop_image_with_mot(input, mot_res, expand=True):
318 319
    res = mot_res['boxes']
    crop_res = []
J
JYChen 已提交
320 321
    new_bboxes = []
    ori_bboxes = []
322
    for box in res:
Z
zhiboniu 已提交
323 324 325 326
        if expand:
            crop_image, new_bbox, ori_bbox = expand_crop(input, box[1:])
        else:
            crop_image, new_bbox, ori_bbox = normal_crop(input, box[1:])
327 328
        if crop_image is not None:
            crop_res.append(crop_image)
J
JYChen 已提交
329 330 331
            new_bboxes.append(new_bbox)
            ori_bboxes.append(ori_bbox)
    return crop_res, new_bboxes, ori_bboxes
332 333 334 335 336 337 338 339 340 341


def parse_mot_res(input):
    mot_res = []
    boxes, scores, ids = input[0]
    for box, score, i in zip(boxes[0], scores[0], ids[0]):
        xmin, ymin, w, h = box
        res = [i, 0, score, xmin, ymin, xmin + w, ymin + h]
        mot_res.append(res)
    return {'boxes': np.array(mot_res)}
J
JYChen 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371


def refine_keypoint_coordinary(kpts, bbox, coord_size):
    """
        This function is used to adjust coordinate values to a fixed scale.
    """
    tl = bbox[:, 0:2]
    wh = bbox[:, 2:] - tl
    tl = np.expand_dims(np.transpose(tl, (1, 0)), (2, 3))
    wh = np.expand_dims(np.transpose(wh, (1, 0)), (2, 3))
    target_w, target_h = coord_size
    res = (kpts - tl) / wh * np.expand_dims(
        np.array([[target_w], [target_h]]), (2, 3))
    return res


def parse_mot_keypoint(input, coord_size):
    parsed_skeleton_with_mot = {}
    ids = []
    skeleton = []
    for tracker_id, kpt_seq in input:
        ids.append(tracker_id)
        kpts = np.array(kpt_seq.kpts, dtype=np.float32)[:, :, :2]
        kpts = np.expand_dims(np.transpose(kpts, [2, 0, 1]),
                              -1)  #T, K, C -> C, T, K, 1
        bbox = np.array(kpt_seq.bboxes, dtype=np.float32)
        skeleton.append(refine_keypoint_coordinary(kpts, bbox, coord_size))
    parsed_skeleton_with_mot["mot_id"] = ids
    parsed_skeleton_with_mot["skeleton"] = skeleton
    return parsed_skeleton_with_mot