pipe_utils.py 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import os
import ast
import argparse
import glob
import yaml
import copy
import numpy as np

from python.keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--config",
        type=str,
        default=None,
        help=("Path of configure"),
        required=True)
    parser.add_argument(
        "--image_file", type=str, default=None, help="Path of image file.")
    parser.add_argument(
        "--image_dir",
        type=str,
        default=None,
        help="Dir of image file, `image_file` has a higher priority.")
    parser.add_argument(
        "--video_file",
        type=str,
        default=None,
        help="Path of video file, `video_file` or `camera_id` has a highest priority."
    )
W
wangguanzhong 已提交
48 49
    parser.add_argument(
        "--model_dir", nargs='*', help="set model dir in pipeline")
50 51 52 53 54
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
W
wangguanzhong 已提交
55 56 57 58 59 60 61 62 63 64
    parser.add_argument(
        "--enable_attr",
        type=ast.literal_eval,
        default=False,
        help="Whether use attribute recognition.")
    parser.add_argument(
        "--enable_action",
        type=ast.literal_eval,
        default=False,
        help="Whether use action recognition.")
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")
    parser.add_argument(
        "--run_mode",
        type=str,
        default='paddle',
        help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)")
    parser.add_argument(
        "--device",
        type=str,
        default='cpu',
        help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
    )
    parser.add_argument(
        "--enable_mkldnn",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn with CPU.")
    parser.add_argument(
        "--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
    parser.add_argument(
        "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
    parser.add_argument(
        "--trt_max_shape",
        type=int,
        default=1280,
        help="max_shape for TensorRT.")
    parser.add_argument(
        "--trt_opt_shape",
        type=int,
        default=640,
        help="opt_shape for TensorRT.")
    parser.add_argument(
        "--trt_calib_mode",
        type=bool,
        default=False,
        help="If the model is produced by TRT offline quantitative "
        "calibration, trt_calib_mode need to set True.")
    return parser


class Times(object):
    def __init__(self):
        self.time = 0.
        # start time
        self.st = 0.
        # end time
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, repeats=1, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += (self.et - self.st) / repeats
        else:
            self.time = (self.et - self.st) / repeats

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class PipeTimer(Times):
    def __init__(self):
        super(PipeTimer, self).__init__()
        self.total_time = Times()
        self.module_time = {
            'det': Times(),
            'mot': Times(),
            'attr': Times(),
            'kpt': Times(),
            'action': Times(),
        }
        self.img_num = 0

149
    def get_total_time(self):
150 151
        total_time = self.total_time.value()
        total_time = round(total_time, 4)
152 153 154 155 156 157 158 159
        average_latency = total_time / max(1, self.img_num)
        qps = 0
        if total_time > 0:
            qps = 1 / average_latency
        return total_time, average_latency, qps

    def info(self):
        total_time, average_latency, qps = self.get_total_time()
160 161 162 163 164 165 166 167 168 169 170
        print("------------------ Inference Time Info ----------------------")
        print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
                                                       self.img_num))

        for k, v in self.module_time.items():
            v_time = round(v.value(), 4)
            if v_time > 0:
                print("{} time(ms): {}".format(k, v_time * 1000))

        print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
            average_latency * 1000, qps))
171
        return qps
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

    def report(self, average=False):
        dic = {}
        dic['total'] = round(self.total_time.value() / max(1, self.img_num),
                             4) if average else self.total_time.value()
        dic['det'] = round(self.module_time['det'].value() /
                           max(1, self.img_num),
                           4) if average else self.module_time['det'].value()
        dic['mot'] = round(self.module_time['mot'].value() /
                           max(1, self.img_num),
                           4) if average else self.module_time['mot'].value()
        dic['attr'] = round(self.module_time['attr'].value() /
                            max(1, self.img_num),
                            4) if average else self.module_time['attr'].value()
        dic['kpt'] = round(self.module_time['kpt'].value() /
                           max(1, self.img_num),
                           4) if average else self.module_time['kpt'].value()
        dic['action'] = round(
            self.module_time['action'].value() / max(1, self.img_num),
            4) if average else self.module_time['action'].value()

        dic['img_num'] = self.img_num
        return dic


W
wangguanzhong 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
def merge_model_dir(args, model_dir):
    # set --model_dir DET=ppyoloe/ to overwrite the model_dir in config file
    task_set = ['DET', 'ATTR', 'MOT', 'KPT', 'ACTION']
    if not model_dir:
        return args
    for md in model_dir:
        md = md.strip()
        k, v = md.split('=', 1)
        k_upper = k.upper()
        assert k_upper in task_set, 'Illegal type of task, expect task are: {}, but received {}'.format(
            task_set, k)
        args[k_upper].update({'model_dir': v})
    return args


212 213 214 215 216 217 218 219 220 221 222 223 224 225
def merge_cfg(args):
    with open(args.config) as f:
        pred_config = yaml.safe_load(f)

    def merge(cfg, arg):
        merge_cfg = copy.deepcopy(cfg)
        for k, v in cfg.items():
            if k in arg:
                merge_cfg[k] = arg[k]
            else:
                if isinstance(v, dict):
                    merge_cfg[k] = merge(v, arg)
        return merge_cfg

W
wangguanzhong 已提交
226 227 228 229
    args_dict = vars(args)
    model_dir = args_dict.pop('model_dir')
    pred_config = merge_model_dir(pred_config, model_dir)
    pred_config = merge(pred_config, args_dict)
230 231 232 233 234
    return pred_config


def print_arguments(cfg):
    print('-----------  Running Arguments -----------')
W
wangguanzhong 已提交
235 236
    buffer = yaml.dump(cfg)
    print(buffer)
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    print('------------------------------------------')


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


def crop_image_with_det(batch_input, det_res):
    boxes = det_res['boxes']
    score = det_res['boxes'][:, 1]
    boxes_num = det_res['boxes_num']
    start_idx = 0
    crop_res = []
    for b_id, input in enumerate(batch_input):
        boxes_num_i = boxes_num[b_id]
        boxes_i = boxes[start_idx:start_idx + boxes_num_i, :]
        score_i = score[start_idx:start_idx + boxes_num_i]
        res = []
        for box in boxes_i:
            crop_image, new_box, ori_box = expand_crop(input, box)
            if crop_image is not None:
                res.append(crop_image)
        crop_res.append(res)
    return crop_res


def crop_image_with_mot(input, mot_res):
    res = mot_res['boxes']
    crop_res = []
    for box in res:
        crop_image, new_box, ori_box = expand_crop(input, box[1:])
        if crop_image is not None:
            crop_res.append(crop_image)
    return crop_res


def parse_mot_res(input):
    mot_res = []
    boxes, scores, ids = input[0]
    for box, score, i in zip(boxes[0], scores[0], ids[0]):
        xmin, ymin, w, h = box
        res = [i, 0, score, xmin, ymin, xmin + w, ymin + h]
        mot_res.append(res)
    return {'boxes': np.array(mot_res)}