ctc_align_op.h 2.6 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string.h>
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
26
class CTCAlignKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
27 28 29 30 31 32
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* output = ctx.Output<LoDTensor>("Output");
    const size_t level = 0;
    auto input_lod = framework::ToAbsOffset(input->lod());
33 34

    // check input dims and lod
W
wanghaoshuang 已提交
35 36 37 38 39 40 41 42 43
    auto input_dims = input->dims();
    PADDLE_ENFORCE_EQ(input_dims[0],
                      static_cast<int64_t>(input_lod[level].back()),
                      "The first dimension of Input(Input) should be equal to "
                      "the sum of all sequences' lengths.");

    const size_t num_sequences = input_lod[level].size() - 1;
    size_t blank = static_cast<size_t>(ctx.Attr<int>("blank"));
    bool merge_repeated = ctx.Attr<bool>("merge_repeated");
44 45

    // merge repeated tokens and delete blank
W
wanghaoshuang 已提交
46 47
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    size_t output_idx = 0;
W
wanghaoshuang 已提交
48 49 50
    std::vector<size_t> output_lod0(1, 0);
    const T* input_data = input->data<T>();
    for (size_t seq_idx = 0; seq_idx < num_sequences; ++seq_idx) {
51
      T prev_token = -1;
W
wanghaoshuang 已提交
52 53
      for (size_t i = input_lod[level][seq_idx];
           i < input_lod[level][seq_idx + 1]; ++i) {
54 55
        if (input_data[i] != blank &&
            !(merge_repeated && input_data[i] == prev_token)) {
W
wanghaoshuang 已提交
56 57
          output_data[output_idx] = input_data[i];
          ++output_idx;
W
wanghaoshuang 已提交
58
        }
59
        prev_token = input_data[i];
W
wanghaoshuang 已提交
60
      }
W
wanghaoshuang 已提交
61
      output_lod0.push_back(output_idx);
W
wanghaoshuang 已提交
62
    }
63 64

    // set output lod
W
wanghaoshuang 已提交
65 66 67 68
    framework::LoD output_lod;
    output_lod.push_back(output_lod0);
    output->set_lod(output_lod);

69
    // resize output dims
W
wanghaoshuang 已提交
70
    output->Resize({static_cast<int64_t>(output_lod0.back()), 1});
W
wanghaoshuang 已提交
71 72 73 74 75
  }
};

}  // namespace operators
}  // namespace paddle