/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; template class CTCAlignKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("Input"); auto* output = ctx.Output("Output"); const size_t level = 0; auto input_lod = framework::ToAbsOffset(input->lod()); // check input dims and lod auto input_dims = input->dims(); PADDLE_ENFORCE_EQ(input_dims[0], static_cast(input_lod[level].back()), "The first dimension of Input(Input) should be equal to " "the sum of all sequences' lengths."); const size_t num_sequences = input_lod[level].size() - 1; size_t blank = static_cast(ctx.Attr("blank")); bool merge_repeated = ctx.Attr("merge_repeated"); // merge repeated tokens and delete blank T* output_data = output->mutable_data(ctx.GetPlace()); size_t output_idx = 0; std::vector output_lod0(1, 0); const T* input_data = input->data(); for (size_t seq_idx = 0; seq_idx < num_sequences; ++seq_idx) { T prev_token = -1; for (size_t i = input_lod[level][seq_idx]; i < input_lod[level][seq_idx + 1]; ++i) { if (input_data[i] != blank && !(merge_repeated && input_data[i] == prev_token)) { output_data[output_idx] = input_data[i]; ++output_idx; } prev_token = input_data[i]; } output_lod0.push_back(output_idx); } // set output lod framework::LoD output_lod; output_lod.push_back(output_lod0); output->set_lod(output_lod); // resize output dims output->Resize({static_cast(output_lod0.back()), 1}); } }; } // namespace operators } // namespace paddle