bbox_utils.py 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import paddle
C
cnn 已提交
17
import numpy as np
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53


def bbox2delta(src_boxes, tgt_boxes, weights):
    src_w = src_boxes[:, 2] - src_boxes[:, 0]
    src_h = src_boxes[:, 3] - src_boxes[:, 1]
    src_ctr_x = src_boxes[:, 0] + 0.5 * src_w
    src_ctr_y = src_boxes[:, 1] + 0.5 * src_h

    tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0]
    tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1]
    tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w
    tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h

    wx, wy, ww, wh = weights
    dx = wx * (tgt_ctr_x - src_ctr_x) / src_w
    dy = wy * (tgt_ctr_y - src_ctr_y) / src_h
    dw = ww * paddle.log(tgt_w / src_w)
    dh = wh * paddle.log(tgt_h / src_h)

    deltas = paddle.stack((dx, dy, dw, dh), axis=1)
    return deltas


def delta2bbox(deltas, boxes, weights):
    clip_scale = math.log(1000.0 / 16)

    widths = boxes[:, 2] - boxes[:, 0]
    heights = boxes[:, 3] - boxes[:, 1]
    ctr_x = boxes[:, 0] + 0.5 * widths
    ctr_y = boxes[:, 1] + 0.5 * heights

    wx, wy, ww, wh = weights
    dx = deltas[:, 0::4] / wx
    dy = deltas[:, 1::4] / wy
    dw = deltas[:, 2::4] / ww
    dh = deltas[:, 3::4] / wh
54
    # Prevent sending too large values into paddle.exp()
55 56 57 58 59 60 61 62
    dw = paddle.clip(dw, max=clip_scale)
    dh = paddle.clip(dh, max=clip_scale)

    pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1)
    pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1)
    pred_w = paddle.exp(dw) * widths.unsqueeze(1)
    pred_h = paddle.exp(dh) * heights.unsqueeze(1)

G
Guanghua Yu 已提交
63 64 65 66 67
    pred_boxes = []
    pred_boxes.append(pred_ctr_x - 0.5 * pred_w)
    pred_boxes.append(pred_ctr_y - 0.5 * pred_h)
    pred_boxes.append(pred_ctr_x + 0.5 * pred_w)
    pred_boxes.append(pred_ctr_y + 0.5 * pred_h)
68
    pred_boxes = paddle.stack(pred_boxes, axis=-1)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

    return pred_boxes


def expand_bbox(bboxes, scale):
    w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5
    h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5
    x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5
    y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5

    w_half *= scale
    h_half *= scale

    bboxes_exp = np.zeros(bboxes.shape, dtype=np.float32)
    bboxes_exp[:, 0] = x_c - w_half
    bboxes_exp[:, 2] = x_c + w_half
    bboxes_exp[:, 1] = y_c - h_half
    bboxes_exp[:, 3] = y_c + h_half

    return bboxes_exp


def clip_bbox(boxes, im_shape):
W
wangguanzhong 已提交
92
    h, w = im_shape[0], im_shape[1]
93 94 95 96 97 98 99 100 101 102
    x1 = boxes[:, 0].clip(0, w)
    y1 = boxes[:, 1].clip(0, h)
    x2 = boxes[:, 2].clip(0, w)
    y2 = boxes[:, 3].clip(0, h)
    return paddle.stack([x1, y1, x2, y2], axis=1)


def nonempty_bbox(boxes, min_size=0, return_mask=False):
    w = boxes[:, 2] - boxes[:, 0]
    h = boxes[:, 3] - boxes[:, 1]
103
    mask = paddle.logical_and(h > min_size, w > min_size)
104 105 106 107 108 109 110 111 112 113 114
    if return_mask:
        return mask
    keep = paddle.nonzero(mask).flatten()
    return keep


def bbox_area(boxes):
    return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])


def bbox_overlaps(boxes1, boxes2):
W
wangguanzhong 已提交
115 116 117 118 119 120 121 122 123 124
    """
    Calculate overlaps between boxes1 and boxes2

    Args:
        boxes1 (Tensor): boxes with shape [M, 4]
        boxes2 (Tensor): boxes with shape [N, 4]

    Return:
        overlaps (Tensor): overlaps between boxes1 and boxes2 with shape [M, N]
    """
125 126 127 128
    M = boxes1.shape[0]
    N = boxes2.shape[0]
    if M * N == 0:
        return paddle.zeros([M, N], dtype='float32')
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    area1 = bbox_area(boxes1)
    area2 = bbox_area(boxes2)

    xy_max = paddle.minimum(
        paddle.unsqueeze(boxes1, 1)[:, :, 2:], boxes2[:, 2:])
    xy_min = paddle.maximum(
        paddle.unsqueeze(boxes1, 1)[:, :, :2], boxes2[:, :2])
    width_height = xy_max - xy_min
    width_height = width_height.clip(min=0)
    inter = width_height.prod(axis=2)

    overlaps = paddle.where(inter > 0, inter /
                            (paddle.unsqueeze(area1, 1) + area2 - inter),
                            paddle.zeros_like(inter))
    return overlaps
W
wangguanzhong 已提交
144 145


146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
def batch_bbox_overlaps(bboxes1,
                        bboxes2,
                        mode='iou',
                        is_aligned=False,
                        eps=1e-6):
    """Calculate overlap between two set of bboxes.
    If ``is_aligned `` is ``False``, then calculate the overlaps between each
    bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned
    pair of bboxes1 and bboxes2.
    Args:
        bboxes1 (Tensor): shape (B, m, 4) in <x1, y1, x2, y2> format or empty.
        bboxes2 (Tensor): shape (B, n, 4) in <x1, y1, x2, y2> format or empty.
            B indicates the batch dim, in shape (B1, B2, ..., Bn).
            If ``is_aligned `` is ``True``, then m and n must be equal.
        mode (str): "iou" (intersection over union) or "iof" (intersection over
            foreground).
        is_aligned (bool, optional): If True, then m and n must be equal.
            Default False.
        eps (float, optional): A value added to the denominator for numerical
            stability. Default 1e-6.
    Returns:
        Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,)
    """
    assert mode in ['iou', 'iof', 'giou'], 'Unsupported mode {}'.format(mode)
    # Either the boxes are empty or the length of boxes's last dimenstion is 4
    assert (bboxes1.shape[-1] == 4 or bboxes1.shape[0] == 0)
    assert (bboxes2.shape[-1] == 4 or bboxes2.shape[0] == 0)

    # Batch dim must be the same
    # Batch dim: (B1, B2, ... Bn)
    assert bboxes1.shape[:-2] == bboxes2.shape[:-2]
    batch_shape = bboxes1.shape[:-2]

    rows = bboxes1.shape[-2] if bboxes1.shape[0] > 0 else 0
    cols = bboxes2.shape[-2] if bboxes2.shape[0] > 0 else 0
    if is_aligned:
        assert rows == cols

    if rows * cols == 0:
        if is_aligned:
            return paddle.full(batch_shape + (rows, ), 1)
        else:
            return paddle.full(batch_shape + (rows, cols), 1)

    area1 = (bboxes1[:, 2] - bboxes1[:, 0]) * (bboxes1[:, 3] - bboxes1[:, 1])
    area2 = (bboxes2[:, 2] - bboxes2[:, 0]) * (bboxes2[:, 3] - bboxes2[:, 1])

    if is_aligned:
        lt = paddle.maximum(bboxes1[:, :2], bboxes2[:, :2])  # [B, rows, 2]
        rb = paddle.minimum(bboxes1[:, 2:], bboxes2[:, 2:])  # [B, rows, 2]

        wh = (rb - lt).clip(min=0)  # [B, rows, 2]
        overlap = wh[:, 0] * wh[:, 1]

        if mode in ['iou', 'giou']:
            union = area1 + area2 - overlap
        else:
            union = area1
        if mode == 'giou':
            enclosed_lt = paddle.minimum(bboxes1[:, :2], bboxes2[:, :2])
            enclosed_rb = paddle.maximum(bboxes1[:, 2:], bboxes2[:, 2:])
    else:
        lt = paddle.maximum(bboxes1[:, :2].reshape([rows, 1, 2]),
                            bboxes2[:, :2])  # [B, rows, cols, 2]
        rb = paddle.minimum(bboxes1[:, 2:].reshape([rows, 1, 2]),
                            bboxes2[:, 2:])  # [B, rows, cols, 2]

        wh = (rb - lt).clip(min=0)  # [B, rows, cols, 2]
        overlap = wh[:, :, 0] * wh[:, :, 1]

        if mode in ['iou', 'giou']:
            union = area1.reshape([rows,1]) \
                    + area2.reshape([1,cols]) - overlap
        else:
            union = area1[:, None]
        if mode == 'giou':
            enclosed_lt = paddle.minimum(bboxes1[:, :2].reshape([rows, 1, 2]),
                                         bboxes2[:, :2])
            enclosed_rb = paddle.maximum(bboxes1[:, 2:].reshape([rows, 1, 2]),
                                         bboxes2[:, 2:])

    eps = paddle.to_tensor([eps])
    union = paddle.maximum(union, eps)
    ious = overlap / union
    if mode in ['iou', 'iof']:
        return ious
    # calculate gious
    enclose_wh = (enclosed_rb - enclosed_lt).clip(min=0)
    enclose_area = enclose_wh[:, :, 0] * enclose_wh[:, :, 1]
    enclose_area = paddle.maximum(enclose_area, eps)
    gious = ious - (enclose_area - union) / enclose_area
    return 1 - gious


W
wangguanzhong 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
def xywh2xyxy(box):
    x, y, w, h = box
    x1 = x - w * 0.5
    y1 = y - h * 0.5
    x2 = x + w * 0.5
    y2 = y + h * 0.5
    return [x1, y1, x2, y2]


def make_grid(h, w, dtype):
    yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)])
    return paddle.stack((xv, yv), 2).cast(dtype=dtype)


def decode_yolo(box, anchor, downsample_ratio):
    """decode yolo box

    Args:
        box (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
        anchor (list): anchor with the shape [na, 2]
        downsample_ratio (int): downsample ratio, default 32
        scale (float): scale, default 1.

    Return:
        box (list): decoded box, [x, y, w, h], all have the shape [b, na, h, w, 1]
    """
    x, y, w, h = box
    na, grid_h, grid_w = x.shape[1:4]
    grid = make_grid(grid_h, grid_w, x.dtype).reshape((1, 1, grid_h, grid_w, 2))
    x1 = (x + grid[:, :, :, :, 0:1]) / grid_w
    y1 = (y + grid[:, :, :, :, 1:2]) / grid_h

    anchor = paddle.to_tensor(anchor)
    anchor = paddle.cast(anchor, x.dtype)
    anchor = anchor.reshape((1, na, 1, 1, 2))
    w1 = paddle.exp(w) * anchor[:, :, :, :, 0:1] / (downsample_ratio * grid_w)
    h1 = paddle.exp(h) * anchor[:, :, :, :, 1:2] / (downsample_ratio * grid_h)

    return [x1, y1, w1, h1]


W
wangguanzhong 已提交
281 282
def batch_iou_similarity(box1, box2, eps=1e-9):
    """Calculate iou of box1 and box2 in batch
W
wangguanzhong 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

    Args:
        box1 (Tensor): box with the shape [N, M1, 4]
        box2 (Tensor): box with the shape [N, M2, 4]

    Return:
        iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2]
    """
    box1 = box1.unsqueeze(2)  # [N, M1, 4] -> [N, M1, 1, 4]
    box2 = box2.unsqueeze(1)  # [N, M2, 4] -> [N, 1, M2, 4]
    px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
    gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
    x1y1 = paddle.maximum(px1y1, gx1y1)
    x2y2 = paddle.minimum(px2y2, gx2y2)
    overlap = (x2y2 - x1y1).clip(0).prod(-1)
    area1 = (px2y2 - px1y1).clip(0).prod(-1)
    area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
    union = area1 + area2 - overlap + eps
    return overlap / union


def bbox_iou(box1, box2, giou=False, diou=False, ciou=False, eps=1e-9):
    """calculate the iou of box1 and box2

    Args:
        box1 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
        box2 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
        giou (bool): whether use giou or not, default False
        diou (bool): whether use diou or not, default False
        ciou (bool): whether use ciou or not, default False
        eps (float): epsilon to avoid divide by zero

    Return:
        iou (Tensor): iou of box1 and box1, with the shape [b, na, h, w, 1]
    """
    px1, py1, px2, py2 = box1
    gx1, gy1, gx2, gy2 = box2
    x1 = paddle.maximum(px1, gx1)
    y1 = paddle.maximum(py1, gy1)
    x2 = paddle.minimum(px2, gx2)
    y2 = paddle.minimum(py2, gy2)

    overlap = ((x2 - x1).clip(0)) * ((y2 - y1).clip(0))

    area1 = (px2 - px1) * (py2 - py1)
    area1 = area1.clip(0)

    area2 = (gx2 - gx1) * (gy2 - gy1)
    area2 = area2.clip(0)

    union = area1 + area2 - overlap + eps
    iou = overlap / union

    if giou or ciou or diou:
        # convex w, h
        cw = paddle.maximum(px2, gx2) - paddle.minimum(px1, gx1)
        ch = paddle.maximum(py2, gy2) - paddle.minimum(py1, gy1)
        if giou:
            c_area = cw * ch + eps
            return iou - (c_area - union) / c_area
        else:
            # convex diagonal squared
            c2 = cw**2 + ch**2 + eps
            # center distance
            rho2 = ((px1 + px2 - gx1 - gx2)**2 + (py1 + py2 - gy1 - gy2)**2) / 4
            if diou:
                return iou - rho2 / c2
            else:
                w1, h1 = px2 - px1, py2 - py1 + eps
                w2, h2 = gx2 - gx1, gy2 - gy1 + eps
                delta = paddle.atan(w1 / h1) - paddle.atan(w2 / h2)
                v = (4 / math.pi**2) * paddle.pow(delta, 2)
                alpha = v / (1 + eps - iou + v)
                alpha.stop_gradient = True
                return iou - (rho2 / c2 + v * alpha)
    else:
        return iou
C
cnn 已提交
360 361


G
George Ni 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
def bbox_iou_np_expand(box1, box2, x1y1x2y2=True, eps=1e-16):
    """
    Calculate the iou of box1 and box2 with numpy.

    Args:
        box1 (ndarray): [N, 4]
        box2 (ndarray): [M, 4], usually N != M
        x1y1x2y2 (bool): whether in x1y1x2y2 stype, default True
        eps (float): epsilon to avoid divide by zero
    Return:
        iou (ndarray): iou of box1 and box2, [N, M]
    """
    N, M = len(box1), len(box2)  # usually N != M
    if x1y1x2y2:
        b1_x1, b1_y1 = box1[:, 0], box1[:, 1]
        b1_x2, b1_y2 = box1[:, 2], box1[:, 3]
        b2_x1, b2_y1 = box2[:, 0], box2[:, 1]
        b2_x2, b2_y2 = box2[:, 2], box2[:, 3]
    else:
        # cxcywh style
        # Transform from center and width to exact coordinates
        b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
        b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
        b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
        b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2

    # get the coordinates of the intersection rectangle
    inter_rect_x1 = np.zeros((N, M), dtype=np.float32)
    inter_rect_y1 = np.zeros((N, M), dtype=np.float32)
    inter_rect_x2 = np.zeros((N, M), dtype=np.float32)
    inter_rect_y2 = np.zeros((N, M), dtype=np.float32)
    for i in range(len(box2)):
        inter_rect_x1[:, i] = np.maximum(b1_x1, b2_x1[i])
        inter_rect_y1[:, i] = np.maximum(b1_y1, b2_y1[i])
        inter_rect_x2[:, i] = np.minimum(b1_x2, b2_x2[i])
        inter_rect_y2[:, i] = np.minimum(b1_y2, b2_y2[i])
    # Intersection area
    inter_area = np.maximum(inter_rect_x2 - inter_rect_x1, 0) * np.maximum(
        inter_rect_y2 - inter_rect_y1, 0)
    # Union Area
    b1_area = np.repeat(
        ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).reshape(-1, 1), M, axis=-1)
    b2_area = np.repeat(
        ((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).reshape(1, -1), N, axis=0)

    ious = inter_area / (b1_area + b2_area - inter_area + eps)
    return ious
G
Guanghua Yu 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452


def bbox2distance(points, bbox, max_dis=None, eps=0.1):
    """Decode bounding box based on distances.
    Args:
        points (Tensor): Shape (n, 2), [x, y].
        bbox (Tensor): Shape (n, 4), "xyxy" format
        max_dis (float): Upper bound of the distance.
        eps (float): a small value to ensure target < max_dis, instead <=
    Returns:
        Tensor: Decoded distances.
    """
    left = points[:, 0] - bbox[:, 0]
    top = points[:, 1] - bbox[:, 1]
    right = bbox[:, 2] - points[:, 0]
    bottom = bbox[:, 3] - points[:, 1]
    if max_dis is not None:
        left = left.clip(min=0, max=max_dis - eps)
        top = top.clip(min=0, max=max_dis - eps)
        right = right.clip(min=0, max=max_dis - eps)
        bottom = bottom.clip(min=0, max=max_dis - eps)
    return paddle.stack([left, top, right, bottom], -1)


def distance2bbox(points, distance, max_shape=None):
    """Decode distance prediction to bounding box.
        Args:
            points (Tensor): Shape (n, 2), [x, y].
            distance (Tensor): Distance from the given point to 4
                boundaries (left, top, right, bottom).
            max_shape (tuple): Shape of the image.
        Returns:
            Tensor: Decoded bboxes.
        """
    x1 = points[:, 0] - distance[:, 0]
    y1 = points[:, 1] - distance[:, 1]
    x2 = points[:, 0] + distance[:, 2]
    y2 = points[:, 1] + distance[:, 3]
    if max_shape is not None:
        x1 = x1.clip(min=0, max=max_shape[1])
        y1 = y1.clip(min=0, max=max_shape[0])
        x2 = x2.clip(min=0, max=max_shape[1])
        y2 = y2.clip(min=0, max=max_shape[0])
    return paddle.stack([x1, y1, x2, y2], -1)
S
shangliang Xu 已提交
453 454 455 456 457


def bbox_center(boxes):
    """Get bbox centers from boxes.
    Args:
S
shangliang Xu 已提交
458
        boxes (Tensor): boxes with shape (..., 4), "xmin, ymin, xmax, ymax" format.
S
shangliang Xu 已提交
459
    Returns:
S
shangliang Xu 已提交
460
        Tensor: boxes centers with shape (..., 2), "cx, cy" format.
S
shangliang Xu 已提交
461
    """
S
shangliang Xu 已提交
462 463
    boxes_cx = (boxes[..., 0] + boxes[..., 2]) / 2
    boxes_cy = (boxes[..., 1] + boxes[..., 3]) / 2
S
shangliang Xu 已提交
464
    return paddle.stack([boxes_cx, boxes_cy], axis=-1)
S
shangliang Xu 已提交
465 466 467 468 469


def batch_distance2bbox(points, distance, max_shapes=None):
    """Decode distance prediction to bounding box for batch.
    Args:
470 471 472
        points (Tensor): [B, ..., 2], "xy" format
        distance (Tensor): [B, ..., 4], "ltrb" format
        max_shapes (Tensor): [B, 2], "h,w" format, Shape of the image.
S
shangliang Xu 已提交
473
    Returns:
474
        Tensor: Decoded bboxes, "x1y1x2y2" format.
S
shangliang Xu 已提交
475
    """
476
    lt, rb = paddle.split(distance, 2, -1)
W
wangxinxin08 已提交
477 478 479
    # while tensor add parameters, parameters should be better placed on the second place
    x1y1 = -lt + points
    x2y2 = rb + points
480
    out_bbox = paddle.concat([x1y1, x2y2], -1)
S
shangliang Xu 已提交
481
    if max_shapes is not None:
482 483 484 485 486 487 488 489
        max_shapes = max_shapes.flip(-1).tile([1, 2])
        delta_dim = out_bbox.ndim - max_shapes.ndim
        for _ in range(delta_dim):
            max_shapes.unsqueeze_(1)
        out_bbox = paddle.where(out_bbox < max_shapes, out_bbox, max_shapes)
        out_bbox = paddle.where(out_bbox > 0, out_bbox,
                                paddle.zeros_like(out_bbox))
    return out_bbox
B
Blake 已提交
490 491 492 493 494 495 496


def delta2bbox_v2(rois,
                  deltas,
                  means=(0.0, 0.0, 0.0, 0.0),
                  stds=(1.0, 1.0, 1.0, 1.0),
                  max_shape=None,
S
shangliang Xu 已提交
497
                  wh_ratio_clip=16.0 / 1000.0,
B
Blake 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
                  ctr_clip=None):
    """Transform network output(delta) to bboxes.
    Based on https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/
             bbox/coder/delta_xywh_bbox_coder.py
    Args:
        rois (Tensor): shape [..., 4], base bboxes, typical examples include
            anchor and rois
        deltas (Tensor): shape [..., 4], offset relative to base bboxes
        means (list[float]): the mean that was used to normalize deltas,
            must be of size 4
        stds (list[float]): the std that was used to normalize deltas,
            must be of size 4
        max_shape (list[float] or None): height and width of image, will be
            used to clip bboxes if not None
        wh_ratio_clip (float): to clip delta wh of decoded bboxes
        ctr_clip (float or None): whether to clip delta xy of decoded bboxes
    """
    if rois.size == 0:
        return paddle.empty_like(rois)
    means = paddle.to_tensor(means)
    stds = paddle.to_tensor(stds)
    deltas = deltas * stds + means

    dxy = deltas[..., :2]
    dwh = deltas[..., 2:]

    pxy = (rois[..., :2] + rois[..., 2:]) * 0.5
    pwh = rois[..., 2:] - rois[..., :2]
    dxy_wh = pwh * dxy

    max_ratio = np.abs(np.log(wh_ratio_clip))
    if ctr_clip is not None:
        dxy_wh = paddle.clip(dxy_wh, max=ctr_clip, min=-ctr_clip)
        dwh = paddle.clip(dwh, max=max_ratio)
    else:
        dwh = dwh.clip(min=-max_ratio, max=max_ratio)

    gxy = pxy + dxy_wh
    gwh = pwh * dwh.exp()
    x1y1 = gxy - (gwh * 0.5)
    x2y2 = gxy + (gwh * 0.5)
    bboxes = paddle.concat([x1y1, x2y2], axis=-1)
    if max_shape is not None:
        bboxes[..., 0::2] = bboxes[..., 0::2].clip(min=0, max=max_shape[1])
        bboxes[..., 1::2] = bboxes[..., 1::2].clip(min=0, max=max_shape[0])
    return bboxes


def bbox2delta_v2(src_boxes,
                  tgt_boxes,
                  means=(0.0, 0.0, 0.0, 0.0),
                  stds=(1.0, 1.0, 1.0, 1.0)):
    """Encode bboxes to deltas.
    Modified from ppdet.modeling.bbox_utils.bbox2delta.
    Args:
        src_boxes (Tensor[..., 4]): base bboxes
        tgt_boxes (Tensor[..., 4]): target bboxes
        means (list[float]): the mean that will be used to normalize delta
        stds (list[float]): the std that will be used to normalize delta
    """
    if src_boxes.size == 0:
        return paddle.empty_like(src_boxes)
    src_w = src_boxes[..., 2] - src_boxes[..., 0]
    src_h = src_boxes[..., 3] - src_boxes[..., 1]
    src_ctr_x = src_boxes[..., 0] + 0.5 * src_w
    src_ctr_y = src_boxes[..., 1] + 0.5 * src_h

    tgt_w = tgt_boxes[..., 2] - tgt_boxes[..., 0]
    tgt_h = tgt_boxes[..., 3] - tgt_boxes[..., 1]
    tgt_ctr_x = tgt_boxes[..., 0] + 0.5 * tgt_w
    tgt_ctr_y = tgt_boxes[..., 1] + 0.5 * tgt_h

    dx = (tgt_ctr_x - src_ctr_x) / src_w
    dy = (tgt_ctr_y - src_ctr_y) / src_h
    dw = paddle.log(tgt_w / src_w)
    dh = paddle.log(tgt_h / src_h)

S
shangliang Xu 已提交
575
    deltas = paddle.stack((dx, dy, dw, dh), axis=1)  # [n, 4]
B
Blake 已提交
576 577 578 579
    means = paddle.to_tensor(means, place=src_boxes.place)
    stds = paddle.to_tensor(stds, place=src_boxes.place)
    deltas = (deltas - means) / stds
    return deltas
W
wangguanzhong 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602


def iou_similarity(box1, box2, eps=1e-10):
    """Calculate iou of box1 and box2

    Args:
        box1 (Tensor): box with the shape [M1, 4]
        box2 (Tensor): box with the shape [M2, 4]

    Return:
        iou (Tensor): iou between box1 and box2 with the shape [M1, M2]
    """
    box1 = box1.unsqueeze(1)  # [M1, 4] -> [M1, 1, 4]
    box2 = box2.unsqueeze(0)  # [M2, 4] -> [1, M2, 4]
    px1y1, px2y2 = box1[:, :, 0:2], box1[:, :, 2:4]
    gx1y1, gx2y2 = box2[:, :, 0:2], box2[:, :, 2:4]
    x1y1 = paddle.maximum(px1y1, gx1y1)
    x2y2 = paddle.minimum(px2y2, gx2y2)
    overlap = (x2y2 - x1y1).clip(0).prod(-1)
    area1 = (px2y2 - px1y1).clip(0).prod(-1)
    area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
    union = area1 + area2 - overlap + eps
    return overlap / union