keypoint_infer.py 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import glob
from functools import reduce

from PIL import Image
import cv2
W
wangguanzhong 已提交
23
import math
24 25 26
import numpy as np
import paddle
from preprocess import preprocess, NormalizeImage, Permute
W
wangguanzhong 已提交
27
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
28
from keypoint_postprocess import HrHRNetPostProcess, HRNetPostProcess
29
from visualize import draw_pose
30 31
from paddle.inference import Config
from paddle.inference import create_predictor
32 33
from utils import argsparser, Timer, get_current_memory_mb
from benchmark_utils import PaddleInferBenchmark
34
from infer import Detector, get_test_images, print_arguments
35 36 37 38 39 40 41 42

# Global dictionary
KEYPOINT_SUPPORT_MODELS = {
    'HigherHRNet': 'keypoint_bottomup',
    'HRNet': 'keypoint_topdown'
}


43
class KeyPoint_Detector(Detector):
44 45 46 47
    """
    Args:
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
48
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
49 50 51 52
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
53 54 55 56 57
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        use_dark(bool): whether to use postprocess in DarkPose
58 59 60 61 62
    """

    def __init__(self,
                 pred_config,
                 model_dir,
G
Guanghua Yu 已提交
63
                 device='CPU',
64
                 run_mode='fluid',
65
                 batch_size=1,
66 67 68 69 70
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
Z
zhiboniu 已提交
71 72
                 enable_mkldnn=False,
                 use_dark=True):
73 74 75
        super(KeyPoint_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
G
Guanghua Yu 已提交
76
            device=device,
77 78
            run_mode=run_mode,
            batch_size=batch_size,
79 80 81 82 83 84
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
Z
zhiboniu 已提交
85
        self.use_dark = use_dark
86

W
wangguanzhong 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    def get_person_from_rect(self, image, results, det_threshold=0.5):
        # crop the person result from image
        self.det_times.preprocess_time_s.start()
        det_results = results['boxes']
        mask = det_results[:, 1] > det_threshold
        valid_rects = det_results[mask]
        rect_images = []
        new_rects = []
        org_rects = []
        for rect in valid_rects:
            rect_image, new_rect, org_rect = expand_crop(image, rect)
            if rect_image is None or rect_image.size == 0:
                continue
            rect_images.append(rect_image)
            new_rects.append(new_rect)
            org_rects.append(org_rect)
        self.det_times.preprocess_time_s.end()
        return rect_images, new_rects, org_rects

    def preprocess(self, image_list):
107 108 109 110 111
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
W
wangguanzhong 已提交
112 113 114 115 116 117 118 119

        input_im_lst = []
        input_im_info_lst = []
        for im in image_list:
            im, im_info = preprocess(im, preprocess_ops)
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        return inputs

    def postprocess(self, np_boxes, np_masks, inputs, threshold=0.5):
        # postprocess output of predictor
        if KEYPOINT_SUPPORT_MODELS[
                self.pred_config.arch] == 'keypoint_bottomup':
            results = {}
            h, w = inputs['im_shape'][0]
            preds = [np_boxes]
            if np_masks is not None:
                preds += np_masks
            preds += [h, w]
            keypoint_postprocess = HrHRNetPostProcess()
            results['keypoint'] = keypoint_postprocess(*preds)
            return results
        elif KEYPOINT_SUPPORT_MODELS[
                self.pred_config.arch] == 'keypoint_topdown':
            results = {}
            imshape = inputs['im_shape'][:, ::-1]
            center = np.round(imshape / 2.)
            scale = imshape / 200.
Z
zhiboniu 已提交
141
            keypoint_postprocess = HRNetPostProcess(use_dark=self.use_dark)
142 143 144 145 146 147
            results['keypoint'] = keypoint_postprocess(np_boxes, center, scale)
            return results
        else:
            raise ValueError("Unsupported arch: {}, expect {}".format(
                self.pred_config.arch, KEYPOINT_SUPPORT_MODELS))

W
wangguanzhong 已提交
148
    def predict(self, image_list, threshold=0.5, repeats=1, add_timer=True):
149 150
        '''
        Args:
W
wangguanzhong 已提交
151
            image_list (list): list of image 
152
            threshold (float): threshold of predicted box' score
W
wangguanzhong 已提交
153 154
            repeats (int): repeat number for prediction
            add_timer (bool): whether add timer during prediction
155 156 157 158 159 160
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
                            shape: [N, im_h, im_w]
        '''
W
wangguanzhong 已提交
161 162 163
        # preprocess
        if add_timer:
            self.det_times.preprocess_time_s.start()
W
wangguanzhong 已提交
164
        inputs = self.preprocess(image_list)
165 166 167 168 169
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
170 171 172
        if add_timer:
            self.det_times.preprocess_time_s.end()
            self.det_times.inference_time_s.start()
173

W
wangguanzhong 已提交
174
        # model prediction
175 176 177 178 179 180 181 182 183 184 185 186 187
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
            if self.pred_config.tagmap:
                masks_tensor = self.predictor.get_output_handle(output_names[1])
                heat_k = self.predictor.get_output_handle(output_names[2])
                inds_k = self.predictor.get_output_handle(output_names[3])
                np_masks = [
                    masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
                    inds_k.copy_to_cpu()
                ]
W
wangguanzhong 已提交
188 189 190
        if add_timer:
            self.det_times.inference_time_s.end(repeats=repeats)
            self.det_times.postprocess_time_s.start()
191

W
wangguanzhong 已提交
192
        # postprocess
193 194
        results = self.postprocess(
            np_boxes, np_masks, inputs, threshold=threshold)
W
wangguanzhong 已提交
195 196 197
        if add_timer:
            self.det_times.postprocess_time_s.end()
            self.det_times.img_num += len(image_list)
198 199 200
        return results


W
wangguanzhong 已提交
201
def create_inputs(imgs, im_info):
202 203
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
204 205
        imgs (list(numpy)): list of image (np.ndarray)
        im_info (list(dict)): list of image info
206 207 208 209
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
W
wangguanzhong 已提交
210 211 212 213 214
    inputs['image'] = np.stack(imgs, axis=0)
    im_shape = []
    for e in im_info:
        im_shape.append(np.array((e['im_shape'])).astype('float32'))
    inputs['im_shape'] = np.stack(im_shape, axis=0)
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    return inputs


class PredictConfig_KeyPoint():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.archcls = KEYPOINT_SUPPORT_MODELS[yml_conf['arch']]
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.tagmap = False
236
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        if 'keypoint_bottomup' == self.archcls:
            self.tagmap = True
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in KEYPOINT_SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], KEYPOINT_SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def predict_image(detector, image_list):
    for i, img_file in enumerate(image_list):
        if FLAGS.run_benchmark:
W
wangguanzhong 已提交
264 265 266 267 268 269
            # warmup 
            detector.predict(
                [img_file], FLAGS.threshold, repeats=10, add_timer=False)
            # run benchmark
            detector.predict(
                [img_file], FLAGS.threshold, repeats=10, add_timer=True)
270 271 272 273 274 275
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
W
wangguanzhong 已提交
276
            results = detector.predict([img_file], FLAGS.threshold)
Z
zhiboniu 已提交
277 278 279 280 281 282 283
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
            draw_pose(
                img_file,
                results,
                visual_thread=FLAGS.threshold,
                save_dir=FLAGS.output_dir)
284 285 286


def predict_video(detector, camera_id):
287
    video_name = 'output.mp4'
288 289 290 291
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
292
        video_name = os.path.split(FLAGS.video_file)[-1]
293
    # Get Video info : resolution, fps, frame count
294 295
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
296 297 298 299
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

300 301 302
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name + '.mp4')
W
wangguanzhong 已提交
303
    fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
304 305 306 307 308 309
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
310
        print('detect frame: %d' % (index))
311
        index += 1
312
        results = detector.predict([frame], FLAGS.threshold)
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        im = draw_pose(
            frame, results, visual_thread=FLAGS.threshold, returnimg=True)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()


def main():
    pred_config = PredictConfig_KeyPoint(FLAGS.model_dir)
    detector = KeyPoint_Detector(
        pred_config,
        FLAGS.model_dir,
G
Guanghua Yu 已提交
328
        device=FLAGS.device,
329 330 331 332 333 334
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
Z
zhiboniu 已提交
335 336
        enable_mkldnn=FLAGS.enable_mkldnn,
        use_dark=FLAGS.use_dark)
337 338 339 340 341 342 343 344 345 346 347 348

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, img_list)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
349 350
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
351 352
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            data_info = {
                'batch_size': 1,
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
            det_log('KeyPoint')
368 369 370 371 372 373 374


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
375 376 377 378
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
379 380

    main()