fusion_lstm_op.cc 25.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/framework/shape_runtime_infer.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/cpu_vec.h"
20
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
22 23
#include "paddle/fluid/platform/cpu_info.h"

T
tensor-tang 已提交
24 25 26 27
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  auto* runtime_ctx = dynamic_cast<framework::RuntimeInferShapeContext*>(ctx);
  if (runtime_ctx == nullptr) {
    LOG(FATAL) << "Should have runtime infer context";
  }
  const auto& ins = runtime_ctx->OpBase().Inputs();
  const auto& outs = runtime_ctx->OpBase().Outputs();
  const auto& scope = runtime_ctx->InferScope();
  const auto ins_end = ins.end();
  const auto outs_end = outs.end();
  auto fair_input = [&](const std::string& name) -> bool {
    auto it = ins.find(name);
    if (it == ins_end) {
      return false;
    }
    const auto& in = it->second;
    if (in.size() != 1 || in[0] == framework::kEmptyVarName) {
      return false;
    }
    return scope.FindVar(in[0]) != nullptr;
  };
  auto fair_output = [&](const std::string& name) -> bool {
    auto it = outs.find(name);
    if (it == outs_end) {
      return false;
    }
    const auto& out = it->second;
    if (out.size() != 1 || out[0] == framework::kEmptyVarName) {
      return false;
    }
    return scope.FindVar(out[0]) != nullptr;
  };
T
tensor-tang 已提交
59

T
tensor-tang 已提交
60 61 62 63 64 65 66 67 68 69
  PADDLE_ENFORCE(fair_input("X"), "Assert only one Input(X) of LSTM.");
  PADDLE_ENFORCE(fair_input("WeightX"),
                 "Assert only one Input(WeightX) of LSTM.");
  PADDLE_ENFORCE(fair_input("WeightH"),
                 "Assert only one Input(WeightH) of LSTM.");
  PADDLE_ENFORCE(fair_input("Bias"), "Assert only one Input(Bias) of LSTM.");
  PADDLE_ENFORCE(fair_output("XX"), "Assert only one Output(XX) of LSTM.");
  PADDLE_ENFORCE(fair_output("Hidden"),
                 "Assert only one Output(Hidden) of LSTM.");
  PADDLE_ENFORCE(fair_output("Cell"), "Assert only one Output(Cell) of LSTM.");
T
tensor-tang 已提交
70

T
tensor-tang 已提交
71 72
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
73

T
tensor-tang 已提交
74 75
  if (fair_input("H0")) {
    PADDLE_ENFORCE(fair_input("C0"),
T
tensor-tang 已提交
76 77 78 79 80 81 82 83 84
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
99 100
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
101 102
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
103 104 105 106 107 108 109
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");
T
tensor-tang 已提交
110 111 112 113 114 115
  PADDLE_ENFORCE_EQ(
      b_dims[1], (ctx->Attrs().Get<bool>("use_peepholes") ? 7 : 4) * frame_size,
      "The second dimension of Input(Bias) should be "
      "7 * %d if enable peepholes connection or"
      "4 * %d if disable peepholes",
      frame_size, frame_size);
T
tensor-tang 已提交
116

T
tensor-tang 已提交
117
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
118 119
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
120 121
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
T
tensor-tang 已提交
122
  int xx_width;
T
tensor-tang 已提交
123
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
124 125 126
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
T
tensor-tang 已提交
127 128 129 130 131 132 133 134 135 136
    PADDLE_ENFORCE(fair_output("BatchedInput"),
                   "Assert only one Output(BatchedInput) of LSTM.");
    PADDLE_ENFORCE(fair_output("BatchedHidden"),
                   "Assert only one Output(BatchedHidden) of LSTM.");
    PADDLE_ENFORCE(fair_output("BatchedCell"),
                   "Assert only one Output(BatchedCell) of LSTM.");
    PADDLE_ENFORCE(fair_output("ReorderedH0"),
                   "Assert only one Output(ReorderedH0) of LSTM");
    PADDLE_ENFORCE(fair_output("ReorderedC0"),
                   "Assert only one Output(ReorderedC0) of LSTM.");
T
tensor-tang 已提交
137 138 139
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedHidden", out_dims);
    ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
140
  }
T
tensor-tang 已提交
141 142
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
143 144 145 146 147
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
148
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
149 150 151 152
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
153
  AddInput("X",
T
tensor-tang 已提交
154
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
155
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
156 157 158 159 160 161 162 163 164
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
165 166 167
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
168 169
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
170 171 172 173 174 175 176 177
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
178 179 180 181 182 183 184 185 186 187 188 189
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
190
  AddOutput("Hidden",
T
tensor-tang 已提交
191
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
192 193
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
194
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
195
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
196
  AddOutput("XX",
T
tensor-tang 已提交
197 198 199
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
200 201
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
202 203 204 205 206
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
207 208 209 210 211 212 213 214
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
215 216 217 218
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
237 238
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
239 240 241
)DOC");
}

T
tensor-tang 已提交
242
template <typename T>
T
tensor-tang 已提交
243
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
244
 public:
T
tensor-tang 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
#define INIT_VEC_FUNC                                                          \
  std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");               \
  auto& act_cell_str = ctx.Attr<std::string>("cell_activation");               \
  auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");          \
  if (platform::jit::MayIUse(platform::jit::avx)) {                            \
    math::VecActivations<T, platform::jit::avx> act_functor;                   \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  } else {                                                                     \
    math::VecActivations<T, platform::jit::isa_any> act_functor;               \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  }

T
tensor-tang 已提交
262 263 264 265 266 267 268 269 270 271 272 273
#define INIT_BASE_INPUT_OUTPUT                        \
  auto* x = ctx.Input<LoDTensor>("X");                \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* c0 = ctx.Input<Tensor>("C0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");     \
  bool is_reverse = ctx.Attr<bool>("is_reverse");     \
  bool use_peepholes = ctx.Attr<bool>("use_peepholes");
T
tensor-tang 已提交
274 275 276 277 278 279 280 281 282 283

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 4D*/ \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D2 = D * 2;                  \
  const int D3 = D * 3;                  \
  const int D4 = wh_dims[1];

T
tensor-tang 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
#define INIT_BASE_INPUT_DATAS                                        \
  const T* x_data = x->data<T>();                                    \
  const T* wx_data = wx->data<T>();                                  \
  const T* wh_data = wh->data<T>();                                  \
  /* diagonal weight*/                                               \
  const T* wc_data = bias->data<T>() + D4;                           \
  /* for peephole only*/                                             \
  Tensor checked_cell;                                               \
  T* checked_cell_data = nullptr;                                    \
  auto place = ctx.GetPlace();                                       \
  if (use_peepholes) {                                               \
    /* w_ic * Ct-1, w_fc * Ct-1  ; w_oc * Ct => ih*/                 \
    checked_cell_data = checked_cell.mutable_data<T>({2, D}, place); \
  }

/// Compute LSTM
#define GEMM_WH_ADDON(bs, prev, out)                                           \
  blas.GEMM(CblasNoTrans, CblasNoTrans, bs, D4, D, static_cast<T>(1), prev, D, \
            wh_data, D4, static_cast<T>(1), out, D4)

// gates: W_ch, W_ih, W_fh, W_oh
#define GET_Ct(ct_1, gates, ct)                   \
  /* C_t = C_t-1 * fgated + cand_gated * igated*/ \
  act_cand(D, gates, gates);                      \
  blas.VMUL(D, gates, gates + D, gates + D);      \
  blas.VMUL(D, ct_1, gates + D2, gates + D2);     \
  blas.VADD(D, gates + D, gates + D2, ct)

#define GET_Ht(ct, gates, ht)        \
  /* H_t = act_cell(C_t) * ogated */ \
  act_cell(D, ct, gates + D2);       \
  blas.VMUL(D, gates + D2, gates + D3, ht)

T
tensor-tang 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
#define GET_Ct_NOH0C0(gates, ct)     \
  /* C_t = igated * cgated*/         \
  act_gate(D, gates + D, gates + D); \
  act_cand(D, gates, gates);         \
  blas.VMUL(D, gates, gates + D, ct)

#define COMPUTE_CtHt_NOH0C0(gates, ct, ht) \
  GET_Ct_NOH0C0(gates, ct);                \
  act_gate(D, gates + D3, gates + D3);     \
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt_PEEPHOLE_NOH0C0(gates, ct, ht) \
  GET_Ct_NOH0C0(gates, ct);                         \
  /* get outgated, put W_oc * C_t on igated */      \
  blas.VMUL(D, wc_data + D2, ct, gates + D);        \
  blas.VADD(D, gates + D, gates + D3, gates + D3);  \
  act_gate(D, gates + D3, gates + D3);              \
T
tensor-tang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt(gates, ct_1, ct, ht) \
  act_gate(D3, gates + D, gates + D);     \
  GET_Ct(ct_1, gates, ct);                \
  GET_Ht(ct, gates, ht)

#define COMPUTE_CtHt_PEEPHOLE(gates, ct_1, ct, ht)        \
  /* get fgated and igated*/                              \
  blas.VMUL(D, wc_data, ct_1, checked_cell_data);         \
  blas.VMUL(D, wc_data + D, ct_1, checked_cell_data + D); \
  blas.VADD(D2, checked_cell_data, gates + D, gates + D); \
  act_gate(D2, gates + D, gates + D);                     \
  GET_Ct(ct_1, gates, ct);                                \
  /* get ogated*/                                         \
  blas.VMUL(D, wc_data + D2, ct, gates + D);              \
  blas.VADD(D, gates + D, gates + D3, gates + D3);        \
  act_gate(D, gates + D3, gates + D3);                    \
  GET_Ht(ct, gates, ht)

T
tensor-tang 已提交
354 355
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
356 357 358
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
359
    INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
360

T
tensor-tang 已提交
361
    auto x_lod = x->lod();
T
tensor-tang 已提交
362
    const int total_T = x_dims[0];
T
tensor-tang 已提交
363
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
364 365
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
T
tensor-tang 已提交
366
    T* xx_data = xx->mutable_data<T>(place);
T
tensor-tang 已提交
367 368
    T* h_out_data = hidden_out->mutable_data<T>(place);
    T* c_out_data = cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
369 370 371
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
                                      xx_data, bias->data<T>());
B
Brian Liu 已提交
372

T
tensor-tang 已提交
373 374 375 376 377
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
T
tensor-tang 已提交
378 379
      h_out_data = h_out_data + offset;
      c_out_data = c_out_data + offset;
T
tensor-tang 已提交
380 381 382 383
      xx_offset = -D4;
      gate_offset = -D;
    }

T
tensor-tang 已提交
384 385 386 387 388 389 390
#define MOVE_ONE_STEP                    \
  prev_h_data = h_out_data;              \
  prev_c_data = c_out_data;              \
  xx_data = xx_data + xx_offset;         \
  h_out_data = h_out_data + gate_offset; \
  c_out_data = c_out_data + gate_offset

T
tensor-tang 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
#define PROCESS_H0C0_DEFINES                       \
  int bid = is_reverse ? N - 1 - i : i;            \
  int seq_len = x_lod[0][bid + 1] - x_lod[0][bid]; \
  const T* prev_c_data = nullptr;                  \
  const T* prev_h_data = nullptr;                  \
  int tstart = 0

#define PROCESS_H0C0_PEEPHOLE                                      \
  PROCESS_H0C0_DEFINES;                                            \
  if (h0_data) {                                                   \
    prev_h_data = h0_data + bid * D;                               \
    prev_c_data = c0_data + bid * D;                               \
  } else {                                                         \
    COMPUTE_CtHt_PEEPHOLE_NOH0C0(xx_data, c_out_data, h_out_data); \
    MOVE_ONE_STEP;                                                 \
    tstart = 1;                                                    \
  }

#define PROCESS_H0C0                                      \
  PROCESS_H0C0_DEFINES;                                   \
  if (h0_data) {                                          \
    prev_h_data = h0_data + bid * D;                      \
    prev_c_data = c0_data + bid * D;                      \
  } else {                                                \
    COMPUTE_CtHt_NOH0C0(xx_data, c_out_data, h_out_data); \
    MOVE_ONE_STEP;                                        \
    tstart = 1;                                           \
T
tensor-tang 已提交
418
  }
B
Brian Liu 已提交
419

T
tensor-tang 已提交
420 421
    if (use_peepholes) {
      for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
422
        PROCESS_H0C0_PEEPHOLE
T
tensor-tang 已提交
423
        for (int step = tstart; step < seq_len; ++step) {
T
tensor-tang 已提交
424 425 426 427 428 429 430
          GEMM_WH_ADDON(1, prev_h_data, xx_data);
          COMPUTE_CtHt_PEEPHOLE(xx_data, prev_c_data, c_out_data, h_out_data);
          MOVE_ONE_STEP;
        }
      }
    } else {
      for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
431
        PROCESS_H0C0
T
tensor-tang 已提交
432
        for (int step = tstart; step < seq_len; ++step) {
T
tensor-tang 已提交
433 434 435 436
          GEMM_WH_ADDON(1, prev_h_data, xx_data);
          COMPUTE_CtHt(xx_data, prev_c_data, c_out_data, h_out_data);
          MOVE_ONE_STEP;
        }
T
tensor-tang 已提交
437
      }
T
tensor-tang 已提交
438
    }
T
tensor-tang 已提交
439 440
#undef PROCESS_H0C0_DEFINES
#undef PROCESS_H0C0_PEEPHOLE
T
tensor-tang 已提交
441 442
#undef PROCESS_H0C0
#undef MOVE_ONE_STEP
T
tensor-tang 已提交
443 444 445 446
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
447
    INIT_BASE_INPUT_OUTPUT
T
tensor-tang 已提交
448
    if (x->lod()[0].size() == 2) {
T
tensor-tang 已提交
449
      SeqCompute(ctx);
T
tensor-tang 已提交
450
      return;
T
tensor-tang 已提交
451 452 453
    }
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
454
    INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
455

T
tensor-tang 已提交
456 457 458 459 460 461 462 463 464 465 466
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
467

T
tensor-tang 已提交
468
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
469 470
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
471 472 473 474
    if (M > D4) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                        xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
475 476
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
477 478 479
      batched_input->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, xx_data,
                                        wx_data, batched_input_data,
480
                                        bias->data<T>());
T
tensor-tang 已提交
481 482
    }

T
tensor-tang 已提交
483 484 485 486 487 488 489
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

    int tstart = 0;
T
tensor-tang 已提交
490 491
    T* prev_h_data = nullptr;
    T* prev_c_data = nullptr;
T
tensor-tang 已提交
492 493 494 495 496 497
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
T
tensor-tang 已提交
498 499
      prev_h_data = reordered_h0_data;
      prev_c_data = reordered_c0_data;
T
tensor-tang 已提交
500 501 502 503 504 505 506 507
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
T
tensor-tang 已提交
508 509 510 511 512
      // compute without h0, c0
      T* cur_in_data = batched_input_data;
      T* cur_h_out_data = batched_h_out_data;
      T* cur_c_out_data = batched_c_out_data;
      for (int i = 0; i < max_bs; ++i) {
T
tensor-tang 已提交
513 514 515 516 517 518 519
        GET_Ct_NOH0C0(cur_in_data, cur_c_out_data);
        if (use_peepholes) {
          blas.VMUL(D, wc_data + D2, cur_c_out_data, cur_in_data + D);
          blas.VADD(D, cur_in_data + D, cur_in_data + D3, cur_in_data + D3);
        }
        act_gate(D, cur_in_data + D3, cur_in_data + D3);
        GET_Ht(cur_c_out_data, cur_in_data, cur_h_out_data);
T
tensor-tang 已提交
520 521 522 523 524
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
      tstart = 1;
T
tensor-tang 已提交
525 526
      prev_h_data = batched_h_out_data;
      prev_c_data = batched_c_out_data;
T
tensor-tang 已提交
527
    }
T
tensor-tang 已提交
528 529
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    const int offset = tstart * max_bs * D;
    batched_input_data = batched_input_data + offset * 4;
    batched_h_out_data = batched_h_out_data + offset;
    batched_c_out_data = batched_c_out_data + offset;

#define DEFINE_CUR                        \
  T* cur_in_data = batched_input_data;    \
  T* cur_prev_c_data = prev_c_data;       \
  T* cur_c_out_data = batched_c_out_data; \
  T* cur_h_out_data = batched_h_out_data

#define MOVE_ONE_BATCH  \
  cur_in_data += D4;    \
  cur_prev_c_data += D; \
  cur_c_out_data += D;  \
  cur_h_out_data += D

#define MOVE_ONE_STEP                  \
  prev_c_data = batched_c_out_data;    \
  prev_h_data = batched_h_out_data;    \
  batched_c_out_data = cur_c_out_data; \
  batched_h_out_data = cur_h_out_data; \
  batched_input_data = cur_in_data
B
Brian Liu 已提交
553

T
tensor-tang 已提交
554 555 556 557 558 559 560 561 562
    if (use_peepholes) {
      for (int step = tstart; step < max_seq_len; ++step) {
        const int cur_bs = batch_starts[step + 1] - batch_starts[step];
        GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
        DEFINE_CUR;
        for (int i = 0; i < cur_bs; ++i) {
          COMPUTE_CtHt_PEEPHOLE(cur_in_data, cur_prev_c_data, cur_c_out_data,
                                cur_h_out_data);
          MOVE_ONE_BATCH;
B
Brian Liu 已提交
563
        }
T
tensor-tang 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576
        MOVE_ONE_STEP;
      }
    } else {
      for (int step = tstart; step < max_seq_len; ++step) {
        const int cur_bs = batch_starts[step + 1] - batch_starts[step];
        GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
        DEFINE_CUR;
        for (int i = 0; i < cur_bs; ++i) {
          COMPUTE_CtHt(cur_in_data, cur_prev_c_data, cur_c_out_data,
                       cur_h_out_data);
          MOVE_ONE_BATCH;
        }
        MOVE_ONE_STEP;
T
tensor-tang 已提交
577 578
      }
    }
T
tensor-tang 已提交
579 580 581
#undef MOVE_ONE_STEP
#undef MOVE_ONE_BATCH
#undef DEFINE_CUR
T
tensor-tang 已提交
582 583

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
584 585 586 587
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
588
  }
T
tensor-tang 已提交
589

T
tensor-tang 已提交
590
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
591
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
592 593 594 595 596
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
597 598 599

#undef COMPUTE_CtHt_PEEPHOLE
#undef COMPUTE_CtHt
T
tensor-tang 已提交
600 601 602
#undef GET_Ct_NOH0C0
#undef COMPUTE_CtHt_NOH0C0
#undef COMPUTE_CtHt_PEEPHOLE_NOH0C0
T
tensor-tang 已提交
603 604 605 606
#undef GET_Ht
#undef GET_Ct
#undef GEMM_WH_ADDON
#undef INIT_BASE_INPUT_DATAS
T
tensor-tang 已提交
607 608 609
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
610 611 612 613 614 615
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
616
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
617 618
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
619 620
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);