fusion_lstm_op.cc 19.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/detail/activation_functions.h"
20
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21 22
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
23 24 25
#include "paddle/fluid/platform/cpu_info.h"

DEFINE_bool(seq_mode, true, "Use sequence mode");
T
tensor-tang 已提交
26 27 28 29 30

namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
31 32 33 34 35
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of LSTM should not be null.");
T
tensor-tang 已提交
36 37 38
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

T
tensor-tang 已提交
39 40
  PADDLE_ENFORCE(ctx->HasOutput("XX"),
                 "Output(XX) of LSTM should not be null.");
T
tensor-tang 已提交
41 42 43 44
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");
T
tensor-tang 已提交
45 46
  PADDLE_ENFORCE(ctx->HasOutput("BatchedGate"),
                 "Output(BatchedGate) of LSTM should not be null.");
T
tensor-tang 已提交
47
  PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
T
tensor-tang 已提交
48
                 "Output(BatchedGate) of LSTM should not be null.");
T
tensor-tang 已提交
49

T
tensor-tang 已提交
50 51
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
52 53 54 55 56 57 58 59 60 61 62 63

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
78 79
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
80 81
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
82 83 84 85 86 87 88 89
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");

T
tensor-tang 已提交
90 91 92 93 94 95
  PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_peepholes"),
                 "Do not support peephole yet.");
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                    "The second dimension of Input(Bias) should be "
                    "4 * %d if disable peepholes connection",
                    frame_size);
T
tensor-tang 已提交
96

T
tensor-tang 已提交
97
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
98 99
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
100
  ctx->SetOutputDim("BatchedGate", {x_dims[0], wx_dims[1]});
T
tensor-tang 已提交
101
  ctx->SetOutputDim("BatchCellPreAct", out_dims);
T
tensor-tang 已提交
102 103 104
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");

T
tensor-tang 已提交
105 106 107 108 109 110
  int xx_width;
  if (FLAGS_seq_mode) {
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
  }
T
tensor-tang 已提交
111 112
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
113 114 115 116 117
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
118
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
119 120 121 122
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
123
  AddInput("X",
T
tensor-tang 已提交
124
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
125
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
126 127 128 129 130 131 132 133 134
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
135 136 137
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
138 139
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
140 141 142 143 144 145 146 147
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
148 149 150 151 152 153 154 155 156 157 158 159
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
160
  AddOutput("Hidden",
T
tensor-tang 已提交
161
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
162 163
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
164
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
165
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
166
  AddOutput("XX",
T
tensor-tang 已提交
167 168 169
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
170 171
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
172 173
  AddOutput("BatchedGate", "(LoDTensor) (same as LSTMOp).").AsIntermediate();
  AddOutput("BatchCellPreAct", "(LoDTensor) (same as LSTMOp).")
T
tensor-tang 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
      .AsIntermediate();
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
201 202
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
203 204 205 206 207 208 209 210 211 212
)DOC");
}

template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
                             const framework::Tensor& src,
                             framework::Vector<size_t> index_lod,
                             framework::Tensor* dst, bool indexed_src) {
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
T
tensor-tang 已提交
213
  // TODO(TJ): check mem copy perf
T
tensor-tang 已提交
214 215 216
  row_shuffle(ctx, src, index_lod, dst, indexed_src);
}

T
tensor-tang 已提交
217
template <typename T>
T
tensor-tang 已提交
218
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
219
 public:
T
tensor-tang 已提交
220 221 222
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
223 224
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");
T
tensor-tang 已提交
225 226 227 228 229
    auto* wx = ctx.Input<Tensor>("WeightX");
    auto* wh = ctx.Input<Tensor>("WeightH");
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* xx = ctx.Output<LoDTensor>("XX");
T
tensor-tang 已提交
230 231
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
T
tensor-tang 已提交
232

T
tensor-tang 已提交
233 234 235 236 237 238 239 240
    auto x_lod = x->lod();
    auto x_dims = x->dims();            // T x M
    auto wh_dims = wh->dims();          // D x 4D
    const int N = x_lod[0].size() - 1;  // batch size
    const int M = x_dims[1];            // x frame size
    const int D = wh_dims[0];
    const int D2 = D * 2;
    const int D3 = D * 3;
T
tensor-tang 已提交
241 242 243
    const int D4 = wh_dims[1];

    const T* x_data = x->data<T>();
T
tensor-tang 已提交
244 245
    const T* h0_data = h0 ? h0->data<T>() : NULL;
    const T* c0_data = c0 ? c0->data<T>() : NULL;
T
tensor-tang 已提交
246
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
247
    const T* wh_data = wh->data<T>();
T
tensor-tang 已提交
248
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
249 250
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
251 252 253 254

    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                      xx_data, bias->data<T>());
T
tensor-tang 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

    for (int i = 0; i < N; ++i) {
      int seq_len = x_lod[0][i + 1] - x_lod[0][i];
      const T* prev_cell_data = NULL;
      const T* prev_hidden_data = NULL;
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + i * D;
        prev_cell_data = c0_data + i * D;
      } else {
        // W_ch, W_ih, W_fh, W_oh
        // actgate
        math::vec_sigmoid<T>(D3, xx_data + D, xx_data + D);
        // ch gate
        math::vec_tanh<T>(D, xx_data, xx_data);
        // cell out= input*tilde
        blas.VMUL(D, xx_data, xx_data + D, cell_out_data);
        // hidden out= act_state(cellout) * outgate
        // act state
        math::vec_tanh<T>(D, cell_out_data, xx_data + D2);
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
        prev_hidden_data = hidden_out_data;
        prev_cell_data = cell_out_data;
        tstart = 1;

        // move offset
        xx_data = xx_data + D4;
        hidden_out_data = hidden_out_data + D;
        cell_out_data = cell_out_data + D;
      }
      for (int step = tstart; step < seq_len; ++step) {
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                  prev_hidden_data, D, wh_data, D4, static_cast<T>(1), xx_data,
                  D4);

        // W_ch, W_ih, W_fh, W_oh
        // actgate
        math::vec_sigmoid<T>(D3, xx_data + D, xx_data + D);
        // ch gate
        math::vec_tanh<T>(D, xx_data, xx_data);

        // a = forget * prev_cell
        blas.VMUL(D, xx_data + D2, prev_cell_data, xx_data + D2);

        // b = input * tilde
        blas.VMUL(D, xx_data, xx_data + D, xx_data + D);

        // cell out= a+b
        blas.VADD(D, xx_data + D, xx_data + D2, cell_out_data);

        // hidden out= act_state(cellout) * outgate
        // act state
        math::vec_tanh<T>(D, cell_out_data, xx_data + D2);
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
        prev_hidden_data = hidden_out_data;
        prev_cell_data = cell_out_data;

        // move offset
        xx_data = xx_data + D4;
        hidden_out_data = hidden_out_data + D;
        cell_out_data = cell_out_data + D;
      }
    }
T
tensor-tang 已提交
322 323 324 325
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
326
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
327 328
    auto* wx = ctx.Input<Tensor>("WeightX");
    auto* wh = ctx.Input<Tensor>("WeightH");
T
tensor-tang 已提交
329 330 331 332
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* hidden_t0 = ctx.Input<Tensor>("H0");
    auto* cell_t0 = ctx.Input<Tensor>("C0");

T
tensor-tang 已提交
333 334
    auto* xx = ctx.Output<LoDTensor>("XX");
    auto* batched_gate = ctx.Output<LoDTensor>("BatchedGate");
T
tensor-tang 已提交
335 336
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
T
tensor-tang 已提交
337 338 339 340 341
    bool is_reverse = ctx.Attr<bool>("is_reverse");

    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* batched_gate_data = batched_gate->mutable_data<T>(ctx.GetPlace());
    hidden_out->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
342 343
    cell_out->mutable_data<T>(ctx.GetPlace());

T
tensor-tang 已提交
344 345 346 347 348
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
    auto x_dims = x->dims();
    auto wx_dims = wx->dims();

T
tensor-tang 已提交
349
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
350 351 352
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    if (x_dims[1] > wx_dims[1]) {
353 354 355
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
                                        x_data, wx_data, xx_data,
                                        bias->data<T>());
T
tensor-tang 已提交
356 357 358
      to_batch(dev_ctx, *xx, batched_gate, true, is_reverse);
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
359
      batched_gate->set_lod(xx->lod());
360 361 362
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
                                        xx_data, wx_data, batched_gate_data,
                                        bias->data<T>());
T
tensor-tang 已提交
363 364
    }

T
tensor-tang 已提交
365 366
    int frame_size = static_cast<int>(wx_dims[1] / 4);
    framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
367
    math::LstmMetaValue<T> lstm_value;
T
tensor-tang 已提交
368 369 370 371
    // no peephole
    lstm_value.check_ig = nullptr;
    lstm_value.check_fg = nullptr;
    lstm_value.check_og = nullptr;
T
tensor-tang 已提交
372 373 374
    lstm_value.prev_state_value = nullptr;
    Tensor ordered_c0;

T
tensor-tang 已提交
375
    framework::Vector<size_t> order(batched_gate->lod()[2]);
T
tensor-tang 已提交
376 377 378 379 380

    if (cell_t0) {
      // Since the batch computing for LSTM reorders the input sequence
      // according to their length. The initialized cell state also needs
      // to reorder.
T
tensor-tang 已提交
381 382
      ReorderInitState<DeviceContext, T>(dev_ctx, *cell_t0, order, &ordered_c0,
                                         true);
T
tensor-tang 已提交
383 384 385 386 387 388
      lstm_value.prev_state_value = ordered_c0.data<T>();
    }

    // Use the local variable as here.
    LoDTensor batch_hidden, batch_cell;
    auto* batch_cell_pre_act = ctx.Output<LoDTensor>("BatchCellPreAct");
T
tensor-tang 已提交
389 390 391
    batch_hidden.mutable_data<T>(out_dims, ctx.GetPlace());
    batch_cell.mutable_data<T>(out_dims, ctx.GetPlace());
    batch_cell_pre_act->mutable_data<T>(out_dims, ctx.GetPlace());
T
tensor-tang 已提交
392

T
tensor-tang 已提交
393 394
    auto batch_starts = batched_gate->lod()[0];
    size_t max_seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
395 396 397 398 399 400 401
    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));

T
tensor-tang 已提交
402
    for (size_t n = 0; n < max_seq_len; n++) {
T
tensor-tang 已提交
403 404 405
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

T
tensor-tang 已提交
406
      Tensor gate_t = batched_gate->Slice(bstart, bend);
T
tensor-tang 已提交
407 408 409 410 411 412 413 414 415 416
      Tensor out_t = batch_hidden.Slice(bstart, bend);
      Tensor cell_t = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend);

      int cur_batch_size = bend - bstart;

      if (n > 0) {
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_hidden_t = batch_hidden.Slice(pre_h_start, pre_h_end);
T
tensor-tang 已提交
417 418
        // TODO(TJ): use gemm directly
        blas.MatMul(pre_hidden_t, false, *wh, false, static_cast<T>(1.0),
T
tensor-tang 已提交
419 420
                    &gate_t, static_cast<T>(1.0));
      } else if (hidden_t0) {
T
tensor-tang 已提交
421
        // TODO(TJ): move h0 outside for
T
tensor-tang 已提交
422 423 424 425 426 427 428 429
        // If n == 0 and there is no initialized hidden state, that is to say
        // the H0 is zeros, the calculation W_h * H0 will be skiped.
        // If n == 0 and there is initialized hidden state, calculate W_h * H0.

        // Since the batch computing for LSTM reorders the input sequence
        // according to their length. The initialized hidden state also needs
        // to reorder.
        Tensor ordered_h0;
T
tensor-tang 已提交
430
        ReorderInitState<DeviceContext, T>(dev_ctx, *hidden_t0, order,
T
tensor-tang 已提交
431
                                           &ordered_h0, true);
T
tensor-tang 已提交
432 433 434
        // TODO(TJ): use gemm directly
        blas.MatMul(ordered_h0, false, *wh, false, static_cast<T>(1.0), &gate_t,
                    static_cast<T>(1.0));
T
tensor-tang 已提交
435 436 437 438 439 440 441
      }

      lstm_value.gate_value = gate_t.data<T>();
      lstm_value.output_value = out_t.data<T>();
      lstm_value.state_value = cell_t.data<T>();
      lstm_value.state_active_value = cell_pre_act_t.data<T>();
      math::LstmUnitFunctor<DeviceContext, T>::compute(
T
tensor-tang 已提交
442 443
          dev_ctx, lstm_value, frame_size, cur_batch_size, gate_act, cell_act,
          cand_act);
T
tensor-tang 已提交
444 445 446 447
      lstm_value.prev_state_value = lstm_value.state_value;
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
448
    batch_hidden.set_lod(batched_gate->lod());
T
tensor-tang 已提交
449
    // restore the output hidden in LoDTensor from the batch hidden
T
tensor-tang 已提交
450
    to_seq(dev_ctx, batch_hidden, hidden_out);
T
tensor-tang 已提交
451

T
tensor-tang 已提交
452
    batch_cell.set_lod(batched_gate->lod());
T
tensor-tang 已提交
453
    // restore the output cell state in LoDTensor from the batch cell
T
tensor-tang 已提交
454
    to_seq(dev_ctx, batch_cell, cell_out);
T
tensor-tang 已提交
455
  }
T
tensor-tang 已提交
456 457 458 459 460 461 462
  void Compute(const framework::ExecutionContext& ctx) const override {
    if (FLAGS_seq_mode) {
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
463 464 465 466 467 468
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
469
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
470 471
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
472 473
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);