train.py 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import numpy as np
22 23
import datetime
from collections import deque
W
wangguanzhong 已提交
24
from tools.configure import print_total_cfg
25

26

27 28 29 30 31
def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)

32

33 34
# NOTE(paddle-dev): All of these flags should be set before 
# `import paddle`. Otherwise, it would not take any effect.
35 36 37 38 39 40 41 42 43 44 45
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

from paddle import fluid
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.data_feed import create_reader

from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results
from ppdet.utils.stats import TrainingStats
from ppdet.utils.cli import ArgsParser
46
from ppdet.utils.check import check_gpu
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
import ppdet.utils.checkpoint as checkpoint
from ppdet.modeling.model_input import create_feed

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def main():
    cfg = load_config(FLAGS.config)
    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)
64 65
    if 'log_iter' not in cfg:
        cfg.log_iter = 20
66

67 68
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
W
wangguanzhong 已提交
69
    print_total_cfg(cfg)
70

71 72 73
    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
74
        devices_num = int(os.environ.get('CPU_NUM', 1))
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

    if 'train_feed' not in cfg:
        train_feed = create(main_arch + 'TrainFeed')
    else:
        train_feed = create(cfg.train_feed)

    if FLAGS.eval:
        if 'eval_feed' not in cfg:
            eval_feed = create(main_arch + 'EvalFeed')
        else:
            eval_feed = create(cfg.eval_feed)

    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # build program
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
98
            model = create(main_arch)
99 100 101 102 103 104 105
            train_pyreader, feed_vars = create_feed(train_feed)
            train_fetches = model.train(feed_vars)
            loss = train_fetches['loss']
            lr = lr_builder()
            optimizer = optim_builder(lr)
            optimizer.minimize(loss)

W
wangguanzhong 已提交
106 107
    train_reader = create_reader(train_feed, cfg.max_iters * devices_num,
                                 FLAGS.dataset_dir)
108 109 110 111 112 113 114 115 116 117
    train_pyreader.decorate_sample_list_generator(train_reader, place)

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

    if FLAGS.eval:
        eval_prog = fluid.Program()
        with fluid.program_guard(eval_prog, startup_prog):
            with fluid.unique_name.guard():
118
                model = create(main_arch)
119 120 121 122
                eval_pyreader, feed_vars = create_feed(eval_feed)
                fetches = model.eval(feed_vars)
        eval_prog = eval_prog.clone(True)

W
wangguanzhong 已提交
123
        eval_reader = create_reader(eval_feed, args_path=FLAGS.dataset_dir)
124 125
        eval_pyreader.decorate_sample_list_generator(eval_reader, place)

126
        # parse eval fetches
127 128 129 130 131
        extra_keys = []
        if cfg.metric == 'COCO':
            extra_keys = ['im_info', 'im_id', 'im_shape']
        if cfg.metric == 'VOC':
            extra_keys = ['gt_box', 'gt_label', 'is_difficult']
132 133 134 135 136 137
        eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                         extra_keys)

    # compile program for multi-devices
    build_strategy = fluid.BuildStrategy()
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
K
Kaipeng Deng 已提交
138
    # only enable sync_bn in multi GPU devices
139
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 and cfg.use_gpu
140 141 142 143 144 145 146 147
    train_compile_program = fluid.compiler.CompiledProgram(
        train_prog).with_data_parallel(
            loss_name=loss.name, build_strategy=build_strategy)
    if FLAGS.eval:
        eval_compile_program = fluid.compiler.CompiledProgram(eval_prog)

    exe.run(startup_prog)

148
    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'
Q
qingqing01 已提交
149
    start_iter = 0
150 151
    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
Q
qingqing01 已提交
152
        start_iter = checkpoint.global_step()
153
    elif cfg.pretrain_weights and fuse_bn:
154 155 156 157
        checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights)
    elif cfg.pretrain_weights:
        checkpoint.load_pretrain(exe, train_prog, cfg.pretrain_weights)

158 159 160 161 162 163
    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

K
Kaipeng Deng 已提交
164 165 166
    # if map_type not set, use default 11point, only use in VOC eval
    map_type = cfg.map_type if 'map_type' in cfg else '11point'

167 168 169 170 171 172 173
    train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
    train_pyreader.start()
    start_time = time.time()
    end_time = time.time()

    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
174
    time_stat = deque(maxlen=cfg.log_iter)
175
    best_box_ap_list = [0.0, 0]  #[map, iter]
176 177 178 179 180 181 182 183

    # use tb-paddle to log data
    if FLAGS.use_tb:
        from tb_paddle import SummaryWriter
        tb_writer = SummaryWriter(FLAGS.tb_log_dir)
        tb_loss_step = 0
        tb_mAP_step = 0

Q
qingqing01 已提交
184
    for it in range(start_iter, cfg.max_iters):
185 186
        start_time = end_time
        end_time = time.time()
187 188 189 190
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - it) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
191 192
        outs = exe.run(train_compile_program, fetch_list=train_values)
        stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}
193 194 195 196 197 198 199 200

        # use tb-paddle to log loss
        if FLAGS.use_tb:
            if it % cfg.log_iter == 0:
                for loss_name, loss_value in stats.items():
                    tb_writer.add_scalar(loss_name, loss_value, tb_loss_step)
                tb_loss_step += 1

201 202
        train_stats.update(stats)
        logs = train_stats.log()
203 204 205 206
        if it % cfg.log_iter == 0:
            strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                it, np.mean(outs[-1]), logs, time_cost, eta)
            logger.info(strs)
207

208 209 210
        if it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1:
            save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
            checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name))
211 212 213 214 215 216 217 218

            if FLAGS.eval:
                # evaluation
                results = eval_run(exe, eval_compile_program, eval_pyreader,
                                   eval_keys, eval_values, eval_cls)
                resolution = None
                if 'mask' in results[0]:
                    resolution = model.mask_head.resolution
219 220 221
                box_ap_stats = eval_results(
                    results, eval_feed, cfg.metric, cfg.num_classes, resolution,
                    is_bbox_normalized, FLAGS.output_eval, map_type)
222 223 224 225 226 227
                
                # use tb_paddle to log mAP
                if FLAGS.use_tb:
                    tb_writer.add_scalar("mAP", box_ap_stats[0], tb_mAP_step)
                    tb_mAP_step += 1
                
228 229 230
                if box_ap_stats[0] > best_box_ap_list[0]:
                    best_box_ap_list[0] = box_ap_stats[0]
                    best_box_ap_list[1] = it
231 232
                    checkpoint.save(exe, train_prog,
                                    os.path.join(save_dir, "best_model"))
233
                logger.info("Best test box ap: {}, in iter: {}".format(
234
                    best_box_ap_list[0], best_box_ap_list[1]))
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

    train_pyreader.reset()


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "-r",
        "--resume_checkpoint",
        default=None,
        type=str,
        help="Checkpoint path for resuming training.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
253
        "--output_eval",
254 255
        default=None,
        type=str,
256
        help="Evaluation directory, default is current directory.")
W
wangguanzhong 已提交
257 258 259 260 261 262
    parser.add_argument(
        "-d",
        "--dataset_dir",
        default=None,
        type=str,
        help="Dataset path, same as DataFeed.dataset.dataset_dir")
263 264 265 266 267 268 269 270 271 272
    parser.add_argument(
        "--use_tb",
        type=bool,
        default=False,
        help="whether to record the data to Tensorboard.")
    parser.add_argument(
        '--tb_log_dir',
        type=str,
        default="tb_log_dir/scalar",
        help='Tensorboard logging directory for scalar.')
273 274
    FLAGS = parser.parse_args()
    main()