train.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import multiprocessing
import numpy as np


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect. 
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

from paddle import fluid

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.data_feed import create_reader

from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results
from ppdet.utils.stats import TrainingStats
from ppdet.utils.cli import ArgsParser
46
from ppdet.utils.check import check_gpu
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
import ppdet.utils.checkpoint as checkpoint
from ppdet.modeling.model_input import create_feed

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def main():
    cfg = load_config(FLAGS.config)

    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)

66 67 68
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(
            os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    if 'train_feed' not in cfg:
        train_feed = create(main_arch + 'TrainFeed')
    else:
        train_feed = create(cfg.train_feed)

    if FLAGS.eval:
        if 'eval_feed' not in cfg:
            eval_feed = create(main_arch + 'EvalFeed')
        else:
            eval_feed = create(cfg.eval_feed)

    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    model = create(main_arch)
    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # build program
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            train_pyreader, feed_vars = create_feed(train_feed)
            train_fetches = model.train(feed_vars)
            loss = train_fetches['loss']
            lr = lr_builder()
            optimizer = optim_builder(lr)
            optimizer.minimize(loss)

    train_reader = create_reader(train_feed, cfg.max_iters * devices_num)
    train_pyreader.decorate_sample_list_generator(train_reader, place)

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

    if FLAGS.eval:
        eval_prog = fluid.Program()
        with fluid.program_guard(eval_prog, startup_prog):
            with fluid.unique_name.guard():
                eval_pyreader, feed_vars = create_feed(eval_feed)
                fetches = model.eval(feed_vars)
        eval_prog = eval_prog.clone(True)

        eval_reader = create_reader(eval_feed)
        eval_pyreader.decorate_sample_list_generator(eval_reader, place)

        # parse train fetches
        extra_keys = ['im_info', 'im_id'] if cfg.metric == 'COCO' else []
        eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                         extra_keys)

    # compile program for multi-devices
    build_strategy = fluid.BuildStrategy()
    build_strategy.memory_optimize = False
    build_strategy.enable_inplace = True
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
K
Kaipeng Deng 已提交
133 134 135
    # only enable sync_bn in multi GPU devices
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
				     and cfg.use_gpu
136 137 138 139 140 141 142 143 144
    train_compile_program = fluid.compiler.CompiledProgram(
        train_prog).with_data_parallel(
            loss_name=loss.name, build_strategy=build_strategy)
    if FLAGS.eval:
        eval_compile_program = fluid.compiler.CompiledProgram(eval_prog)

    exe.run(startup_prog)

    freeze_bn = getattr(model.backbone, 'freeze_norm', False)
Q
qingqing01 已提交
145
    start_iter = 0
146 147
    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
Q
qingqing01 已提交
148
        start_iter = checkpoint.global_step()
149 150 151 152 153 154 155 156 157 158 159 160
    elif cfg.pretrain_weights and freeze_bn:
        checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights)
    elif cfg.pretrain_weights:
        checkpoint.load_pretrain(exe, train_prog, cfg.pretrain_weights)

    train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
    train_pyreader.start()
    start_time = time.time()
    end_time = time.time()

    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
Q
qingqing01 已提交
161
    for it in range(start_iter, cfg.max_iters):
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        start_time = end_time
        end_time = time.time()
        outs = exe.run(train_compile_program, fetch_list=train_values)
        stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}
        train_stats.update(stats)
        logs = train_stats.log()
        strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
            it, np.mean(outs[-1]), logs, end_time - start_time)
        logger.info(strs)

        if it > 0 and it % cfg.snapshot_iter == 0:
            checkpoint.save(exe, train_prog, os.path.join(save_dir, str(it)))

            if FLAGS.eval:
                # evaluation
                results = eval_run(exe, eval_compile_program, eval_pyreader,
                                   eval_keys, eval_values, eval_cls)
                resolution = None
                if 'mask' in results[0]:
                    resolution = model.mask_head.resolution
                eval_results(results, eval_feed, cfg.metric, resolution,
                             FLAGS.output_file)

    checkpoint.save(exe, train_prog, os.path.join(save_dir, "model_final"))
    train_pyreader.reset()


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "-r",
        "--resume_checkpoint",
        default=None,
        type=str,
        help="Checkpoint path for resuming training.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
        "-f",
        "--output_file",
        default=None,
        type=str,
        help="Evaluation file name, default to bbox.json and mask.json.")
    FLAGS = parser.parse_args()
    main()