infer.py 20.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import argparse
17
import time
18
import yaml
C
channings 已提交
19 20
import ast
from functools import reduce
21

22 23 24
from PIL import Image
import cv2
import numpy as np
25
import paddle
26
import paddle.fluid as fluid
G
Guanghua Yu 已提交
27
from preprocess import preprocess, Resize, Normalize, Permute, PadStride
28
from visualize import visualize_box_mask
29
from ppdet.utils.check import enable_static_mode
30

31 32 33 34 35 36 37 38 39 40
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'SSD',
    'RetinaNet',
    'EfficientDet',
    'RCNN',
    'Face',
    'TTF',
    'FCOS',
G
Guanghua Yu 已提交
41
    'SOLOv2',
42 43
}

44

45
class Detector(object):
46 47
    """
    Args:
G
Guanghua Yu 已提交
48 49 50 51 52
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of __model__, __params__ and infer_cfg.yml
        use_gpu (bool): whether use gpu
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        threshold (float): threshold to reserve the result for output.
53 54 55
    """

    def __init__(self,
G
Guanghua Yu 已提交
56 57 58 59 60 61 62 63 64
                 config,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
                 threshold=0.5):
        self.config = config
        if self.config.use_python_inference:
            self.executor, self.program, self.fecth_targets = load_executor(
                model_dir, use_gpu=use_gpu)
65
        else:
G
Guanghua Yu 已提交
66 67 68 69 70
            self.predictor = load_predictor(
                model_dir,
                run_mode=run_mode,
                min_subgraph_size=self.config.min_subgraph_size,
                use_gpu=use_gpu)
71

G
Guanghua Yu 已提交
72 73 74
    def preprocess(self, im):
        preprocess_ops = []
        for op_info in self.config.preprocess_infos:
75 76
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
G
Guanghua Yu 已提交
77
            if op_type == 'Resize':
78 79
                new_op_info['arch'] = self.config.arch
            preprocess_ops.append(eval(op_type)(**new_op_info))
G
Guanghua Yu 已提交
80 81 82
        im, im_info = preprocess(im, preprocess_ops)
        inputs = create_inputs(im, im_info, self.config.arch)
        return inputs, im_info
83

G
Guanghua Yu 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    def postprocess(self, np_boxes, np_masks, im_info, threshold=0.5):
        # postprocess output of predictor
        results = {}
        if self.config.arch in ['SSD', 'Face']:
            w, h = im_info['origin_shape']
            np_boxes[:, 2] *= h
            np_boxes[:, 3] *= w
            np_boxes[:, 4] *= h
            np_boxes[:, 5] *= w
        expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
        np_boxes = np_boxes[expect_boxes, :]
        for box in np_boxes:
            print('class_id:{:d}, confidence:{:.4f},'
                  'left_top:[{:.2f},{:.2f}],'
                  ' right_bottom:[{:.2f},{:.2f}]'.format(
                      int(box[0]), box[1], box[2], box[3], box[4], box[5]))
        results['boxes'] = np_boxes
        if np_masks is not None:
            np_masks = np_masks[expect_boxes, :, :, :]
            results['masks'] = np_masks
        return results
105

G
Guanghua Yu 已提交
106 107 108 109 110 111 112
    def predict(self,
                image,
                threshold=0.5,
                warmup=0,
                repeats=1,
                run_benchmark=False):
        '''
113
        Args:
G
Guanghua Yu 已提交
114 115
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
116
        Returns:
G
Guanghua Yu 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
                            shape:[N, class_num, mask_resolution, mask_resolution]
        '''
        inputs, im_info = self.preprocess(image)
        np_boxes, np_masks = None, None
        if self.config.use_python_inference:
            for i in range(warmup):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
            t1 = time.time()
            for i in range(repeats):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
            t2 = time.time()
            ms = (t2 - t1) * 1000.0 / repeats
            print("Inference: {} ms per batch image".format(ms))
            np_boxes = np.array(outs[0])
            if self.config.mask_resolution is not None:
                np_masks = np.array(outs[1])
142
        else:
G
Guanghua Yu 已提交
143 144 145 146
            input_names = self.predictor.get_input_names()
            for i in range(len(input_names)):
                input_tensor = self.predictor.get_input_tensor(input_names[i])
                input_tensor.copy_from_cpu(inputs[input_names[i]])
147

G
Guanghua Yu 已提交
148 149 150 151 152 153 154 155 156
            for i in range(warmup):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
                boxes_tensor = self.predictor.get_output_tensor(output_names[0])
                np_boxes = boxes_tensor.copy_to_cpu()
                if self.config.mask_resolution is not None:
                    masks_tensor = self.predictor.get_output_tensor(
                        output_names[1])
                    np_masks = masks_tensor.copy_to_cpu()
157

G
Guanghua Yu 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170
            t1 = time.time()
            for i in range(repeats):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
                boxes_tensor = self.predictor.get_output_tensor(output_names[0])
                np_boxes = boxes_tensor.copy_to_cpu()
                if self.config.mask_resolution is not None:
                    masks_tensor = self.predictor.get_output_tensor(
                        output_names[1])
                    np_masks = masks_tensor.copy_to_cpu()
            t2 = time.time()
            ms = (t2 - t1) * 1000.0 / repeats
            print("Inference: {} ms per batch image".format(ms))
171

G
Guanghua Yu 已提交
172 173 174 175 176 177 178 179 180
        # do not perform postprocess in benchmark mode
        results = []
        if not run_benchmark:
            if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
                print('[WARNNING] No object detected.')
                results = {'boxes': np.array([])}
            else:
                results = self.postprocess(
                    np_boxes, np_masks, im_info, threshold=threshold)
181

G
Guanghua Yu 已提交
182
        return results
183 184


G
Guanghua Yu 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197
class DetectorSOLOv2(Detector):
    def __init__(self,
                 config,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
                 threshold=0.5):
        super(DetectorSOLOv2, self).__init__(
            config=config,
            model_dir=model_dir,
            use_gpu=use_gpu,
            run_mode=run_mode,
            threshold=threshold)
198

G
Guanghua Yu 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    def predict(self,
                image,
                threshold=0.5,
                warmup=0,
                repeats=1,
                run_benchmark=False):
        inputs, im_info = self.preprocess(image)
        np_label, np_score, np_segms = None, None, None
        if self.config.use_python_inference:
            for i in range(warmup):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
            t1 = time.time()
            for i in range(repeats):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
            t2 = time.time()
            ms = (t2 - t1) * 1000.0 / repeats
            print("Inference: {} ms per batch image".format(ms))
            np_label, np_score, np_segms = np.array(outs[0]), np.array(outs[
                1]), np.array(outs[2])
        else:
            input_names = self.predictor.get_input_names()
            for i in range(len(input_names)):
                input_tensor = self.predictor.get_input_tensor(input_names[i])
                input_tensor.copy_from_cpu(inputs[input_names[i]])
            for i in range(warmup):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
                np_label = self.predictor.get_output_tensor(output_names[
                    0]).copy_to_cpu()
                np_score = self.predictor.get_output_tensor(output_names[
                    1]).copy_to_cpu()
                np_segms = self.predictor.get_output_tensor(output_names[
                    2]).copy_to_cpu()
238

G
Guanghua Yu 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            t1 = time.time()
            for i in range(repeats):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
                np_label = self.predictor.get_output_tensor(output_names[
                    0]).copy_to_cpu()
                np_score = self.predictor.get_output_tensor(output_names[
                    1]).copy_to_cpu()
                np_segms = self.predictor.get_output_tensor(output_names[
                    2]).copy_to_cpu()
            t2 = time.time()
            ms = (t2 - t1) * 1000.0 / repeats
            print("Inference: {} ms per batch image".format(ms))

        # do not perform postprocess in benchmark mode
        results = []
        if not run_benchmark:
            return dict(segm=np_segms, label=np_label, score=np_score)
        return results
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272


def create_inputs(im, im_info, model_arch='YOLO'):
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
        model_arch (str): model type
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
    inputs['image'] = im
    origin_shape = list(im_info['origin_shape'])
    resize_shape = list(im_info['resize_shape'])
G
Guanghua Yu 已提交
273 274
    pad_shape = list(im_info['pad_shape']) if im_info[
        'pad_shape'] is not None else list(im_info['resize_shape'])
W
wangguanzhong 已提交
275
    scale_x, scale_y = im_info['scale']
276 277 278
    if 'YOLO' in model_arch:
        im_size = np.array([origin_shape]).astype('int32')
        inputs['im_size'] = im_size
279
    elif 'RetinaNet' in model_arch or 'EfficientDet' in model_arch:
W
wangguanzhong 已提交
280
        scale = scale_x
G
Guanghua Yu 已提交
281
        im_info = np.array([pad_shape + [scale]]).astype('float32')
282
        inputs['im_info'] = im_info
283
    elif ('RCNN' in model_arch) or ('FCOS' in model_arch):
W
wangguanzhong 已提交
284
        scale = scale_x
G
Guanghua Yu 已提交
285
        im_info = np.array([pad_shape + [scale]]).astype('float32')
286 287 288
        im_shape = np.array([origin_shape + [1.]]).astype('float32')
        inputs['im_info'] = im_info
        inputs['im_shape'] = im_shape
W
wangguanzhong 已提交
289 290 291
    elif 'TTF' in model_arch:
        scale_factor = np.array([scale_x, scale_y] * 2).astype('float32')
        inputs['scale_factor'] = scale_factor
G
Guanghua Yu 已提交
292 293 294 295
    elif 'SOLOv2' in model_arch:
        scale = scale_x
        im_info = np.array([resize_shape + [scale]]).astype('float32')
        inputs['im_info'] = im_info
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    return inputs


class Config():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.use_python_inference = yml_conf['use_python_inference']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.mask_resolution = None
        if 'mask_resolution' in yml_conf:
            self.mask_resolution = yml_conf['mask_resolution']
C
channings 已提交
319
        self.print_config()
320 321 322 323 324 325

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
326
        for support_model in SUPPORT_MODELS:
327 328
            if support_model in yml_conf['arch']:
                return True
W
wangguanzhong 已提交
329
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
330
            'arch'], SUPPORT_MODELS))
331

C
channings 已提交
332 333 334 335 336 337 338 339 340
    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: %s' % ('Use Padddle Executor', self.use_python_inference))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')

341 342 343 344 345 346

def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
                   use_gpu=False,
                   min_subgraph_size=3):
347
    """set AnalysisConfig, generate AnalysisPredictor
348 349 350 351 352 353
    Args:
        model_dir (str): root path of __model__ and __params__
        use_gpu (bool): whether use gpu
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
354
        ValueError: predict by TensorRT need use_gpu == True.
355
    """
356
    if not use_gpu and not run_mode == 'fluid':
357 358 359
        raise ValueError(
            "Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
            .format(run_mode, use_gpu))
W
wangguanzhong 已提交
360 361 362
    if run_mode == 'trt_int8':
        raise ValueError("TensorRT int8 mode is not supported now, "
                         "please use trt_fp32 or trt_fp16 instead.")
363
    precision_map = {
C
channings 已提交
364
        'trt_int8': fluid.core.AnalysisConfig.Precision.Int8,
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
        'trt_fp32': fluid.core.AnalysisConfig.Precision.Float32,
        'trt_fp16': fluid.core.AnalysisConfig.Precision.Half
    }
    config = fluid.core.AnalysisConfig(
        os.path.join(model_dir, '__model__'),
        os.path.join(model_dir, '__params__'))
    if use_gpu:
        # initial GPU memory(M), device ID
        config.enable_use_gpu(100, 0)
        # optimize graph and fuse op
        config.switch_ir_optim(True)
    else:
        config.disable_gpu()

    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
381
            workspace_size=1 << 10,
382 383 384 385
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
W
wangguanzhong 已提交
386
            use_calib_mode=False)
387 388 389 390 391

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
392
    # disable feed, fetch OP, needed by zero_copy_run
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    config.switch_use_feed_fetch_ops(False)
    predictor = fluid.core.create_paddle_predictor(config)
    return predictor


def load_executor(model_dir, use_gpu=False):
    if use_gpu:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    program, feed_names, fetch_targets = fluid.io.load_inference_model(
        dirname=model_dir,
        executor=exe,
        model_filename='__model__',
        params_filename='__params__')
    return exe, program, fetch_targets


def visualize(image_file,
              results,
              labels,
              mask_resolution=14,
G
Guanghua Yu 已提交
416 417
              output_dir='output/',
              threshold=0.5):
418 419
    # visualize the predict result
    im = visualize_box_mask(
G
Guanghua Yu 已提交
420 421 422 423 424
        image_file,
        results,
        labels,
        mask_resolution=mask_resolution,
        threshold=threshold)
425 426 427 428 429 430 431 432
    img_name = os.path.split(image_file)[-1]
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    out_path = os.path.join(output_dir, img_name)
    im.save(out_path, quality=95)
    print("save result to: " + out_path)


G
Guanghua Yu 已提交
433 434 435 436 437
def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')
438 439


G
Guanghua Yu 已提交
440
def predict_image(detector):
C
channings 已提交
441 442
    if FLAGS.run_benchmark:
        detector.predict(
K
Kaipeng Deng 已提交
443 444 445 446 447
            FLAGS.image_file,
            FLAGS.threshold,
            warmup=100,
            repeats=100,
            run_benchmark=True)
C
channings 已提交
448 449 450 451 452 453 454
    else:
        results = detector.predict(FLAGS.image_file, FLAGS.threshold)
        visualize(
            FLAGS.image_file,
            results,
            detector.config.labels,
            mask_resolution=detector.config.mask_resolution,
G
Guanghua Yu 已提交
455 456
            output_dir=FLAGS.output_dir,
            threshold=FLAGS.threshold)
457 458


G
Guanghua Yu 已提交
459
def predict_video(detector, camera_id):
C
channings 已提交
460 461 462 463 464 465
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
466 467 468
    fps = 30
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
K
Kaipeng Deng 已提交
469
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
470
    if not os.path.exists(FLAGS.output_dir):
471
        os.makedirs(FLAGS.output_dir)
472 473 474 475 476 477 478 479 480 481 482 483 484 485
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
        results = detector.predict(frame, FLAGS.threshold)
        im = visualize_box_mask(
            frame,
            results,
            detector.config.labels,
486 487
            mask_resolution=detector.config.mask_resolution,
            threshold=FLAGS.threshold)
488 489
        im = np.array(im)
        writer.write(im)
C
channings 已提交
490 491 492 493
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
494 495 496
    writer.release()


G
Guanghua Yu 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
def main():
    config = Config(FLAGS.model_dir)
    detector = Detector(
        config, FLAGS.model_dir, use_gpu=FLAGS.use_gpu, run_mode=FLAGS.run_mode)
    if config.arch == 'SOLOv2':
        detector = DetectorSOLOv2(
            config,
            FLAGS.model_dir,
            use_gpu=FLAGS.use_gpu,
            run_mode=FLAGS.run_mode)
    # predict from image
    if FLAGS.image_file != '':
        predict_image(detector)
    # predict from video file or camera video stream
    if FLAGS.video_file != '' or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)
C
channings 已提交
513 514


515
if __name__ == '__main__':
516
    enable_static_mode()
517 518 519 520 521 522
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
        help=("Directory include:'__model__', '__params__', "
523
              "'infer_cfg.yml', created by tools/export_model.py."),
524 525 526 527 528
        required=True)
    parser.add_argument(
        "--image_file", type=str, default='', help="Path of image file.")
    parser.add_argument(
        "--video_file", type=str, default='', help="Path of video file.")
C
channings 已提交
529 530 531 532 533
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
534 535 536 537
    parser.add_argument(
        "--run_mode",
        type=str,
        default='fluid',
W
wangguanzhong 已提交
538
        help="mode of running(fluid/trt_fp32/trt_fp16)")
539
    parser.add_argument(
C
channings 已提交
540 541 542 543 544 545 546 547 548
        "--use_gpu",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict with GPU.")
    parser.add_argument(
        "--run_benchmark",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict a image_file repeatedly for benchmark")
549 550 551 552 553 554 555 556 557
    parser.add_argument(
        "--threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")

    FLAGS = parser.parse_args()
C
channings 已提交
558
    print_arguments(FLAGS)
559 560
    if FLAGS.image_file != '' and FLAGS.video_file != '':
        assert "Cannot predict image and video at the same time"
G
Guanghua Yu 已提交
561 562

    main()