margin_rank_loss_op.h 3.4 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename T>
struct ReLU {
  HOSTDEVICE T operator()(const T& val) const {
    if (val < 0) {
      return static_cast<T>(0);
    } else {
      return val;
    }
  }
};

template <typename T>
struct Heaviside {
  HOSTDEVICE T operator()(const T& val) const {
    if (val > 0) {
      return static_cast<T>(1);
    } else {
      return static_cast<T>(0);
    }
  }
};

template <typename Place, typename T, typename AttrType = T>
class MarginRankLossKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
49 50
    auto* out_t = ctx.Output<framework::Tensor>("Out");
    auto* act_t = ctx.Output<framework::Tensor>("Activated");
Y
Yibing Liu 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    auto* label_t = ctx.Input<framework::Tensor>("Label");
    auto* x1_t = ctx.Input<framework::Tensor>("X1");
    auto* x2_t = ctx.Input<framework::Tensor>("X2");

    out_t->mutable_data<T>(ctx.GetPlace());
    act_t->mutable_data<T>(ctx.GetPlace());

    auto margin = static_cast<T>(ctx.Attr<AttrType>("margin"));
    auto out = framework::EigenVector<T>::Flatten(*out_t);
    auto act = framework::EigenVector<T>::Flatten(*act_t);

    auto label = framework::EigenVector<T>::Flatten(*label_t);
    auto x1 = framework::EigenVector<T>::Flatten(*x1_t);
    auto x2 = framework::EigenVector<T>::Flatten(*x2_t);

    auto& dev = ctx.GetEigenDevice<Place>();
    out.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(ReLU<T>());
69
    act.device(dev) = out.unaryExpr(Heaviside<T>());
Y
Yibing Liu 已提交
70 71 72 73 74 75 76 77 78 79 80 81
  }
};

template <typename Place, typename T>
class MarginRankLossGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* d_x1_t =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X1"));
    auto* d_x2_t =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X2"));

82
    auto* act_t = ctx.Input<framework::Tensor>("Activated");
Y
Yibing Liu 已提交
83 84 85 86 87 88
    auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* label_t = ctx.Input<framework::Tensor>("Label");

    auto d_out = framework::EigenVector<T>::Flatten(*d_out_t);
    auto act = framework::EigenVector<T>::Flatten(*act_t);
    auto label = framework::EigenVector<T>::Flatten(*label_t);
89
    auto& dev = ctx.GetEigenDevice<Place>();
Y
Yibing Liu 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

    // compute d_x1
    if (d_x1_t) {
      d_x1_t->mutable_data<T>(ctx.GetPlace());
      auto d_x1 = framework::EigenVector<T>::Flatten(*d_x1_t);
      d_x1.device(dev) = -d_out * act * label;
    }
    // compute d_x2
    if (d_x2_t) {
      d_x2_t->mutable_data<T>(ctx.GetPlace());
      auto d_x2 = framework::EigenVector<T>::Flatten(*d_x2_t);
      d_x2.device(dev) = d_out * act * label;
    }
  }
};
}  // namespace operators
}  // namespace paddle