Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
79c2d90a
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
79c2d90a
编写于
9月 21, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add margin_rank_loss_op
上级
44002846
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
283 addition
and
0 deletion
+283
-0
paddle/operators/margin_rank_loss_op.cc
paddle/operators/margin_rank_loss_op.cc
+115
-0
paddle/operators/margin_rank_loss_op.cu
paddle/operators/margin_rank_loss_op.cu
+22
-0
paddle/operators/margin_rank_loss_op.h
paddle/operators/margin_rank_loss_op.h
+106
-0
python/paddle/v2/framework/tests/test_margin_rank_loss_op.py
python/paddle/v2/framework/tests/test_margin_rank_loss_op.py
+40
-0
未找到文件。
paddle/operators/margin_rank_loss_op.cc
0 → 100644
浏览文件 @
79c2d90a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/margin_rank_loss_op.h"
namespace
paddle
{
namespace
operators
{
class
MarginRankLossOp
:
public
framework
::
OperatorWithKernel
{
public:
MarginRankLossOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
// input check
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Label) shouldn't be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X1"
),
"Input(X1) shouldn't be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X2"
),
"Input(X2) shouldn't be null"
);
auto
label_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
)
->
dims
();
auto
x1_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X1"
)
->
dims
();
auto
x2_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X2"
)
->
dims
();
PADDLE_ENFORCE
((
label_dims
.
size
()
==
1
)
&&
(
x1_dims
.
size
()
==
1
)
&&
(
x2_dims
.
size
()
==
1
),
"The rank of all inputs must be 1."
);
PADDLE_ENFORCE
((
label_dims
==
x1_dims
)
&&
(
x1_dims
==
x2_dims
),
"All inputs must have the same size"
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
label_dims
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Activated"
)
->
Resize
(
label_dims
);
}
};
template
<
typename
AttrType
>
class
MarginRankLossOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
MarginRankLossOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Label"
,
"The label indicating X1 ranked higher than X2 or not."
);
AddInput
(
"X1"
,
"The first input of MarginRankLossOp."
);
AddInput
(
"X2"
,
"The second input of MarginRankLossOp"
);
AddAttr
<
AttrType
>
(
"margin"
,
"Margin for MarginRankLossOp"
).
SetDefault
(
0
);
AddOutput
(
"Out"
,
"The output loss of MarginRankLoss operator"
);
AddOutput
(
"Activated"
,
"Intermediate tensor to indicate "
"whether Output(Out) is activated"
)
.
AsIntermediate
();
AddComment
(
R"DOC(MarginRankLoss operator
loss(x1, x2, y) = max(0, -label * (x1-x2) + margin)
)DOC"
);
}
};
class
MarginRankLossGradOp
:
public
framework
::
OperatorWithKernel
{
public:
MarginRankLossGradOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Label) shouldn't be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X1"
),
"Input(X1) shouldn't be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X2"
),
"Input(X2) shouldn't be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Activated"
),
"Intermediate(Activated) shouldn't be null."
);
auto
dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X1"
)
->
dims
();
auto
*
x1_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X1"
));
auto
*
x2_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X2"
));
if
(
x1_grad
)
{
x1_grad
->
Resize
(
dims
);
}
if
(
x2_grad
)
{
x2_grad
->
Resize
(
dims
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
margin_rank_loss
,
ops
::
MarginRankLossOp
,
ops
::
MarginRankLossOpMaker
<
float
>
,
margin_rank_loss_grad
,
ops
::
MarginRankLossGradOp
);
REGISTER_OP_CPU_KERNEL
(
margin_rank_loss
,
ops
::
MarginRankLossKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
margin_rank_loss_grad
,
ops
::
MarginRankLossGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/margin_rank_loss_op.cu
0 → 100644
浏览文件 @
79c2d90a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/margin_rank_loss_op.h"
REGISTER_OP_GPU_KERNEL
(
margin_rank_loss
,
paddle
::
operators
::
MarginRankLossKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
margin_rank_loss_grad
,
paddle
::
operators
::
MarginRankLossGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/margin_rank_loss_op.h
0 → 100644
浏览文件 @
79c2d90a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
ReLU
{
HOSTDEVICE
T
operator
()(
const
T
&
val
)
const
{
if
(
val
<
0
)
{
return
static_cast
<
T
>
(
0
);
}
else
{
return
val
;
}
}
};
template
<
typename
T
>
struct
Heaviside
{
HOSTDEVICE
T
operator
()(
const
T
&
val
)
const
{
if
(
val
>
0
)
{
return
static_cast
<
T
>
(
1
);
}
else
{
return
static_cast
<
T
>
(
0
);
}
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
MarginRankLossKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
out_t
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
act_t
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Activated"
);
auto
*
label_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
x1_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X1"
);
auto
*
x2_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X2"
);
out_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
act_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
margin
=
static_cast
<
T
>
(
ctx
.
Attr
<
AttrType
>
(
"margin"
));
auto
out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out_t
);
auto
act
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
act_t
);
auto
label
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
label_t
);
auto
x1
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
x1_t
);
auto
x2
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
x2_t
);
auto
&
dev
=
ctx
.
GetEigenDevice
<
Place
>
();
act
.
device
(
dev
)
=
(
-
label
*
(
x1
-
x2
)
+
margin
).
unaryExpr
(
Heaviside
<
T
>
());
out
.
device
(
dev
)
=
(
-
label
*
(
x1
-
x2
)
+
margin
).
unaryExpr
(
ReLU
<
T
>
());
}
};
template
<
typename
Place
,
typename
T
>
class
MarginRankLossGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
d_x1_t
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X1"
));
auto
*
d_x2_t
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X2"
));
auto
*
act_t
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Activated"
);
auto
*
d_out_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
label_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
&
dev
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
d_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_out_t
);
auto
act
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
act_t
);
auto
label
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
label_t
);
// compute d_x1
if
(
d_x1_t
)
{
d_x1_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_x1
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_x1_t
);
d_x1
.
device
(
dev
)
=
-
d_out
*
act
*
label
;
}
// compute d_x2
if
(
d_x2_t
)
{
d_x2_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_x2
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_x2_t
);
d_x2
.
device
(
dev
)
=
d_out
*
act
*
label
;
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/v2/framework/tests/test_margin_rank_loss_op.py
0 → 100644
浏览文件 @
79c2d90a
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestMarginRankLossOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"margin_rank_loss"
batch_size
=
5
margin
=
0.1
# labels_{i} = {0, 1.0} or {0, 0.5, 1.0}
label
=
np
.
random
.
randint
(
0
,
2
,
size
=
(
batch_size
,
)).
astype
(
"float32"
)
x1
=
np
.
random
.
random
((
batch_size
,
)).
astype
(
"float32"
)
x2
=
np
.
random
.
random
((
batch_size
,
)).
astype
(
"float32"
)
# loss = max(0, -label * (x1 - x2) + margin)
loss
=
[
max
(
0
,
-
label
[
i
]
*
(
x1
[
i
]
-
x2
[
i
])
+
margin
)
for
i
in
range
(
batch_size
)
]
self
.
attrs
=
{
'margin'
:
margin
}
self
.
inputs
=
{
'Label'
:
label
,
'X1'
:
x1
,
'X2'
:
x2
}
self
.
outputs
=
{
'Out'
:
loss
}
def
test_check_output
(
self
):
self
.
check_output
()
"""
def test_check_grad(self):
self.check_grad(["X1", "X2"], "Out")
def test_check_grad_ignore_x1(self):
self.check_grad(["X2"], "Out", no_grad_set=set('X1'))
def test_check_grad_ignore_x2(self):
self.check_grad(["X1"], "Out", no_grad_set=set('X2'))
"""
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录