test_MKLDNN.cpp 8.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <string>
#include <vector>
18
#include "MKLDNNTester.h"
T
tensor-tang 已提交
19
#include "ModelConfig.pb.h"
20
#include "paddle/gserver/activations/MKLDNNActivation.h"
T
tensor-tang 已提交
21
#include "paddle/math/MathUtils.h"
T
tensor-tang 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

using namespace paddle;  // NOLINT

DECLARE_bool(thread_local_rand_use_global_seed);
DECLARE_bool(use_gpu);
DECLARE_bool(use_mkldnn);

struct testFCDesc {
  int bs;
  int ic;
  int oc;
  int ih, iw;  // oh == ow == 1
};

void testFcLayer(const testFCDesc& pm) {
  const std::string compareTypes[] = {"mkldnn_fc", "fc"};
  TestConfig cfg;
  cfg.layerConfig.set_type(compareTypes[0]);
  cfg.layerConfig.set_size(pm.oc);
  cfg.inputDefs.push_back(
      {INPUT_DATA,
       "layer_0",
       /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw),
       /* size of weight= */ size_t(pm.oc * pm.ic * pm.ih * pm.iw)});
  cfg.layerConfig.add_inputs();

48
  MKLDNNTester tester;
T
tensor-tang 已提交
49 50 51 52 53 54 55 56 57 58
  for (auto biasSize : {pm.oc, 0}) {
    cfg.biasSize = biasSize;
    TestConfig ref = cfg;
    ref.layerConfig.set_type(compareTypes[1]);
    for (auto bs : {pm.bs, 1}) {
      tester.run(cfg, ref, bs, pm.ih, pm.iw);
    }
  }
}

59
TEST(MKLDNNLayer, FcLayer) {
T
tensor-tang 已提交
60 61 62 63 64 65
  testFcLayer({/*bs*/ 2, /*ic*/ 2, /*oc*/ 3, /*ih*/ 1, /*iw*/ 1});
  testFcLayer({/*bs*/ 3, /*ic*/ 7, /*oc*/ 19, /*ih*/ 1, /*iw*/ 1});
  testFcLayer({/*bs*/ 8, /*ic*/ 16, /*oc*/ 32, /*ih*/ 13, /*iw*/ 13});
  testFcLayer({/*bs*/ 4, /*ic*/ 12, /*oc*/ 18, /*ih*/ 13, /*iw*/ 11});
  testFcLayer({/*bs*/ 2, /*ic*/ 64, /*oc*/ 32, /*ih*/ 16, /*iw*/ 16});
  testFcLayer({/*bs*/ 15, /*ic*/ 3, /*oc*/ 6, /*ih*/ 16, /*iw*/ 16});
T
tensor-tang 已提交
66 67
}

T
tensor-tang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
struct testConvDesc {
  int bs, gp;
  int ic, ih, iw;
  int oc, oh, ow;
  int fh, fw;
  int ph, pw;
  int sh, sw;
  int dh, dw;
};

void testConvLayer(const testConvDesc& pm) {
  const std::string compareTypes[] = {"mkldnn_conv", "exconv"};
  TestConfig cfg;
  cfg.layerConfig.set_type(compareTypes[0]);
  cfg.layerConfig.set_num_filters(pm.oc);
  cfg.layerConfig.set_size(pm.oc * pm.oh * pm.ow);
  // cfg.layerConfig.set_partial_sum(1); // TODO: check it
  cfg.layerConfig.set_shared_biases(true);
  cfg.inputDefs.push_back(
      {INPUT_DATA,
       "layer_0",
       /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw),
       /* size of weight= */ size_t(pm.oc * pm.ic * pm.fh * pm.fw / pm.gp)});
  LayerInputConfig* input = cfg.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();
  conv->set_groups(pm.gp);
  conv->set_img_size(pm.iw);
  conv->set_img_size_y(pm.ih);
  conv->set_output_x(pm.ow);
  conv->set_output_y(pm.oh);
  conv->set_filter_size(pm.fw);
  conv->set_filter_size_y(pm.fh);
  conv->set_channels(pm.ic);
  conv->set_padding(pm.pw);
  conv->set_padding_y(pm.ph);
  conv->set_stride(pm.sw);
  conv->set_stride_y(pm.sh);
  conv->set_dilation(pm.dw);
  conv->set_dilation_y(pm.dh);
  conv->set_caffe_mode(true);
  conv->set_filter_channels(conv->channels() / conv->groups());
  CHECK_EQ(conv->filter_channels() * pm.gp, conv->channels())
      << "it is indivisible";

  int fh = (pm.fh - 1) * pm.dh + 1;
  int fw = (pm.fw - 1) * pm.dw + 1;
  int ow = outputSize(pm.iw, fw, pm.pw, pm.sw, true);
  int oh = outputSize(pm.ih, fh, pm.ph, pm.sh, true);
  CHECK_EQ(ow, pm.ow) << "output size check failed";
  CHECK_EQ(oh, pm.oh) << "output size check failed";

  MKLDNNTester tester;
  for (auto biasSize : {pm.oc, 0}) {
    cfg.biasSize = biasSize;
    TestConfig ref = cfg;
    ref.layerConfig.set_type(compareTypes[1]);
    for (auto bs : {pm.bs, 1}) {
      tester.run(cfg, ref, bs, pm.ih, pm.iw);
    }
  }
}

TEST(MKLDNNLayer, ConvLayer) {
  /* bs, gp, ic, ih, iw, oc, oh, ow, fh, fw, ph, pw, sh, sw, dh, dw */
  testConvLayer({2, 1, 3, 32, 32, 16, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1});
  testConvLayer({2, 1, 8, 16, 16, 8, 16, 16, 3, 3, 1, 1, 1, 1, 1, 1});
  testConvLayer({3, 1, 16, 32, 32, 3, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1});
  testConvLayer({8, 1, 16, 18, 18, 32, 18, 18, 3, 3, 1, 1, 1, 1, 1, 1});
  testConvLayer({16, 1, 1, 42, 31, 32, 23, 11, 4, 5, 3, 2, 2, 3, 1, 1});
  testConvLayer({2, 1, 8, 16, 16, 8, 8, 8, 3, 3, 1, 1, 2, 2, 1, 1});
  testConvLayer({3, 1, 8, 13, 13, 8, 7, 7, 3, 3, 1, 1, 2, 2, 1, 1});
  // with groups
  testConvLayer({2, 2, 4, 5, 5, 8, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1});
  testConvLayer({2, 3, 3, 5, 5, 3, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1});
  testConvLayer({4, 4, 16, 3, 3, 16, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1});
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
struct testPoolDesc {
  int bs, ch;  // input channel and output channel are the same
  int ih, iw;
  int oh, ow;
  int fh, fw;
  int ph, pw;
  int sh, sw;
};

void testPoolLayer(const testPoolDesc& pm) {
  const std::string compareTypes[] = {"mkldnn_pool", "pool"};
  TestConfig cfg;
  cfg.layerConfig.set_type(compareTypes[0]);
  cfg.layerConfig.set_size(pm.ch * pm.oh * pm.ow);
  cfg.inputDefs.push_back(
      {INPUT_DATA,
       "layer_0",
       /* size of input layer= */ size_t(pm.ch * pm.ih * pm.iw),
       0});
  LayerInputConfig* input = cfg.layerConfig.add_inputs();
  PoolConfig* pool = input->mutable_pool_conf();
  pool->set_channels(pm.ch);
  pool->set_img_size(pm.iw);
  pool->set_img_size_y(pm.ih);
  pool->set_output_x(pm.ow);
  pool->set_output_y(pm.oh);
  pool->set_size_x(pm.fw);
  pool->set_size_y(pm.fh);
  pool->set_padding(pm.pw);
  pool->set_padding_y(pm.ph);
  pool->set_stride(pm.sw);
  pool->set_stride_y(pm.sh);

  int oh = outputSize(pm.ih, pm.fh, pm.ph, pm.sh, false);
  int ow = outputSize(pm.iw, pm.fw, pm.pw, pm.sw, false);
  CHECK_EQ(ow, pm.ow) << "output size check failed";
  CHECK_EQ(oh, pm.oh) << "output size check failed";

  MKLDNNTester tester;
  for (auto type : {"max-projection", "avg-projection"}) {
    pool->set_pool_type(type);
    TestConfig ref = cfg;
    ref.layerConfig.set_type(compareTypes[1]);
    for (auto bs : {pm.bs, 1}) {
      tester.run(cfg, ref, bs, pm.ih, pm.iw);
    }
  }
}

194
TEST(MKLDNNLayer, PoolLayer) {
195 196 197 198 199 200 201 202
  /* bs, ch, ih, iw, oh, ow, fh, fw, ph, pw, sh, sw*/
  testPoolLayer({2, 1, 4, 4, 2, 2, 3, 3, 0, 0, 2, 2});
  testPoolLayer({10, 8, 16, 16, 8, 8, 2, 2, 0, 0, 2, 2});
  testPoolLayer({4, 2, 5, 5, 3, 3, 3, 3, 1, 1, 2, 2});
  testPoolLayer({8, 16, 56, 56, 28, 28, 3, 3, 0, 0, 2, 2});
  testPoolLayer({8, 16, 14, 14, 7, 7, 3, 3, 0, 0, 2, 2});
  testPoolLayer({4, 16, 7, 7, 1, 1, 7, 7, 0, 0, 1, 1});
  testPoolLayer({4, 2, 5, 5, 3, 3, 5, 5, 1, 1, 1, 1});
203
  testPoolLayer({2, 8, 56, 56, 29, 29, 3, 3, 1, 1, 2, 2});
204 205
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
struct testActDesc {
  int bs, ch;
  int ih, iw;
};

static void getAddtoConfig(TestConfig& cfg, const testActDesc& pm) {
  cfg.biasSize = 0;
  cfg.layerConfig.set_type("addto");
  cfg.layerConfig.set_size(pm.ch * pm.ih * pm.iw);
  cfg.inputDefs.push_back(
      {INPUT_DATA,
       "layer_0",
       /* size of input layer= */ size_t(pm.ch * pm.ih * pm.iw),
       0});
  cfg.layerConfig.add_inputs();
}

void testActivation(std::string& type, const testActDesc& pm) {
  const std::string compareTypes[] = {type, type.erase(0, 7)};
  TestConfig cfg;
  getAddtoConfig(cfg, pm);

  TestConfig ref = cfg;
  cfg.layerConfig.set_active_type(compareTypes[0]);
  ref.layerConfig.set_active_type(compareTypes[1]);
  MKLDNNTester tester;
  for (auto bs : {pm.bs, 1}) {
    tester.run(cfg, ref, bs, pm.ih, pm.iw);
  }
}

TEST(MKLDNNActivation, Activations) {
  auto types = MKLDNNActivation::getAllRegisteredTypes();
  // TODO(TJ): mkldnn_softmax not implemented, paddle do not have elu activation
  std::set<string> excluded{"mkldnn_softmax", "mkldnn_elu"};
  for (auto type : types) {
    if (excluded.count(type)) {
      continue;
    }
    testActivation(type, {16, 64, 32, 32});
  }
}

T
tensor-tang 已提交
249 250 251 252 253 254 255 256 257 258 259
// TODO(TJ): add branch test

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  FLAGS_use_gpu = false;
  FLAGS_use_mkldnn = true;
  initMain(argc, argv);
  FLAGS_thread_local_rand_use_global_seed = true;
  srand(1);
  return RUN_ALL_TESTS();
}