Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
ec9009f3
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ec9009f3
编写于
8月 07, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mkldnn tester
上级
1203ebc4
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
607 addition
and
1 deletion
+607
-1
paddle/gserver/layers/MkldnnFcLayer.cpp
paddle/gserver/layers/MkldnnFcLayer.cpp
+18
-0
paddle/gserver/layers/MkldnnFcLayer.h
paddle/gserver/layers/MkldnnFcLayer.h
+2
-0
paddle/gserver/layers/MkldnnLayer.cpp
paddle/gserver/layers/MkldnnLayer.cpp
+2
-1
paddle/gserver/tests/CMakeLists.txt
paddle/gserver/tests/CMakeLists.txt
+9
-0
paddle/gserver/tests/MkldnnTester.cpp
paddle/gserver/tests/MkldnnTester.cpp
+381
-0
paddle/gserver/tests/MkldnnTester.h
paddle/gserver/tests/MkldnnTester.h
+119
-0
paddle/gserver/tests/test_Mkldnn.cpp
paddle/gserver/tests/test_Mkldnn.cpp
+76
-0
未找到文件。
paddle/gserver/layers/MkldnnFcLayer.cpp
浏览文件 @
ec9009f3
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "MkldnnFcLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
...
...
@@ -41,6 +42,7 @@ bool MkldnnFcLayer::init(const LayerMap& layerMap,
// create weight
weight_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
oc_
,
iLayerSize_
,
parameters_
[
0
],
0
));
initWgt
();
// create biases
if
(
biasParameter_
.
get
()
!=
NULL
)
{
...
...
@@ -49,6 +51,22 @@ bool MkldnnFcLayer::init(const LayerMap& layerMap,
return
true
;
}
void
MkldnnFcLayer
::
initWgt
()
{
// The weight_ is transposed from initial paddle weight
MatrixPtr
paddleWgt
=
Matrix
::
create
(
weight_
->
getW
()
->
getData
(),
iLayerSize_
,
oc_
,
false
,
false
);
std
::
ostringstream
ostr
;
paddleWgt
->
print
(
ostr
);
VLOG
(
DNN_BASE
)
<<
ostr
.
str
();
// Firstly in mkldnn, the matrix is transposed from initial paddle weight
MatrixPtr
paddleWgtT
;
paddleWgt
->
transpose
(
paddleWgtT
,
true
);
weight_
->
getW
()
->
copyFrom
(
*
paddleWgtT
);
}
void
MkldnnFcLayer
::
reshape
()
{
const
Argument
&
input
=
getInput
(
0
);
int
batchSize
=
input
.
getBatchSize
();
...
...
paddle/gserver/layers/MkldnnFcLayer.h
浏览文件 @
ec9009f3
...
...
@@ -41,6 +41,8 @@ public:
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
initWgt
();
void
reshape
();
void
forward
(
PassType
passType
)
override
;
...
...
paddle/gserver/layers/MkldnnLayer.cpp
浏览文件 @
ec9009f3
...
...
@@ -26,7 +26,8 @@ namespace paddle {
bool
MkldnnLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
CHECK
(
FLAGS_use_mkldnn
)
<<
"MkldnnLayers only support use_mkldnn."
<<
"Please set WITH_MKLDNN=ON"
;
<<
"Please set WITH_MKLDNN=ON "
<<
"and set use_mkldnn=True"
;
// TODO(TJ): deivecId
return
Layer
::
init
(
layerMap
,
parameterMap
);
}
...
...
paddle/gserver/tests/CMakeLists.txt
浏览文件 @
ec9009f3
...
...
@@ -18,6 +18,15 @@ add_unittest_without_exec(test_LayerGrad
add_test
(
NAME test_LayerGrad
COMMAND test_LayerGrad
)
########## test_Mkldnn layers and activations ##########
if
(
WITH_MKLDNN
)
add_unittest_without_exec
(
test_Mkldnn
test_Mkldnn.cpp
MkldnnTester.cpp
LayerGradUtil.cpp
)
add_test
(
NAME test_Mkldnn COMMAND test_Mkldnn
)
endif
()
################ test_CRFLayerGrad ####################
add_unittest_without_exec
(
test_CRFLayerGrad
test_CRFLayerGrad.cpp
...
...
paddle/gserver/tests/MkldnnTester.cpp
0 → 100644
浏览文件 @
ec9009f3
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MkldnnTester.h"
#include "paddle/gserver/layers/MkldnnBase.h"
namespace
paddle
{
// init data layer and test layer of both dnn and reference
void
MkldnnTester
::
reset
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
)
{
const
bool
trans
=
false
;
const
bool
useGpu
=
false
;
// clear
configs_
.
clear
();
layerNames_
.
clear
();
dataLayers_
.
clear
();
datas_
.
clear
();
layerMaps_
.
clear
();
parameters_
.
clear
();
testLayers_
.
clear
();
// resize
configs_
.
resize
(
NUM
);
layerNames_
.
resize
(
NUM
);
dataLayers_
.
resize
(
NUM
);
datas_
.
resize
(
NUM
);
layerMaps_
.
resize
(
NUM
);
parameters_
.
resize
(
NUM
);
testLayers_
.
resize
(
NUM
);
// reset configs and layer names
configs_
[
DNN
]
=
dnn
;
configs_
[
REF
]
=
ref
;
layerNames_
[
DNN
]
=
"mkldnn"
;
// the first is mkldnn layer
layerNames_
[
REF
]
=
"reference"
;
// second is reference layer
// reset others
for
(
size_t
i
=
0
;
i
<
NUM
;
++
i
)
{
configs_
[
i
].
layerConfig
.
set_name
(
layerNames_
[
i
]);
initDataLayer
(
configs_
[
i
],
&
(
dataLayers_
[
i
]),
&
(
datas_
[
i
]),
&
(
layerMaps_
[
i
]),
layerNames_
[
i
],
batchSize
,
trans
,
useGpu
);
initTestLayer
(
configs_
[
i
],
&
(
layerMaps_
[
i
]),
&
(
parameters_
[
i
]),
&
(
testLayers_
[
i
]));
}
dnnLayer_
=
testLayers_
[
DNN
];
refLayer_
=
testLayers_
[
REF
];
EXPECT_EQ
(
dataLayers_
[
DNN
].
size
(),
dataLayers_
[
REF
].
size
());
EXPECT_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
setInputImgSize
();
}
void
MkldnnTester
::
setInputImgSize
()
{
for
(
size_t
n
=
0
;
n
<
dataLayers_
.
size
();
++
n
)
{
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
n
].
size
();
++
i
)
{
// TODO(TJ): fix me when concat and elewise ready
dataLayers_
[
n
][
i
]
->
getOutput
().
setFrameHeight
(
ih_
);
dataLayers_
[
n
][
i
]
->
getOutput
().
setFrameWidth
(
iw_
);
}
}
}
// init randome parameters of ref, and copy to mkldnn
void
MkldnnTester
::
randomWgtDatas
()
{
EXPECT_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
for
(
size_t
i
=
0
;
i
<
parameters_
[
REF
].
size
();
++
i
)
{
const
VectorPtr
&
dnnValue
=
parameters_
[
DNN
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
const
VectorPtr
&
refValue
=
parameters_
[
REF
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
parameters_
[
REF
][
i
]
->
randomize
();
dnnValue
->
copyFrom
(
*
refValue
);
VLOG
(
lvl_
)
<<
"Random weight data "
<<
parameters_
[
DNN
][
i
]
->
getName
();
printVector
(
dnnValue
);
}
}
// random botdata of ref layer and copy same to mkldnn
void
MkldnnTester
::
randomBotDatas
()
{
CHECK_EQ
(
dataLayers_
.
size
(),
NUM
);
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
DNN
].
size
();
++
i
)
{
dataLayers_
[
REF
][
i
]
->
getOutputValue
()
->
randomizeUniform
();
dataLayers_
[
DNN
][
i
]
->
getOutputValue
()
->
copyFrom
(
*
(
dataLayers_
[
REF
][
i
]
->
getOutputValue
()));
VLOG
(
lvl_
)
<<
"Input "
<<
i
<<
" data:"
;
printMatrix
(
dataLayers_
[
REF
][
i
]
->
getOutputValue
());
}
}
void
MkldnnTester
::
randomTopDiffs
()
{
refLayer_
->
getOutputGrad
()
->
randomizeUniform
();
dnnLayer_
->
getOutputGrad
()
->
copyFrom
(
*
(
refLayer_
->
getOutputGrad
()));
VLOG
(
lvl_
)
<<
"Random dom Backward Input, TopDiff: "
;
printMatrix
(
refLayer_
->
getOutputGrad
());
}
void
MkldnnTester
::
checkForward
()
{
printTopDatas
();
double
delta
=
compareMatrix
(
testLayers_
[
DNN
]
->
getOutputValue
(),
testLayers_
[
REF
]
->
getOutputValue
());
VLOG
(
DNN_TESTS_DETAILS
)
<<
"Check Forward"
;
EXPECT_LE
(
fabs
(
delta
),
eps_
);
}
void
MkldnnTester
::
checkBackwardData
()
{
const
bool
isBN
=
dnnLayer_
->
getType
()
==
"mkldnn_batch_norm"
;
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
DNN
].
size
();
++
i
)
{
const
MatrixPtr
&
dnnDiff
=
dataLayers_
[
DNN
][
i
]
->
getOutputGrad
();
const
MatrixPtr
&
refDiff
=
dataLayers_
[
REF
][
i
]
->
getOutputGrad
();
VLOG
(
lvl_
)
<<
"Mkldnn Backward Output BotDiff "
<<
i
;
printMatrix
(
dnnDiff
);
VLOG
(
lvl_
)
<<
"Reference Backward Output BotDiff "
<<
i
;
printMatrix
(
refDiff
);
double
delta
=
compareMatrix
(
dnnDiff
,
refDiff
);
EXPECT_LE
(
fabs
(
delta
),
eps_
);
if
(
isBN
)
{
// the other two inputs in batch norm are for moving mean and var
break
;
}
}
}
void
MkldnnTester
::
checkBackwardWgts
()
{
CHECK_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
vector
<
VectorPtr
>
dnnWgts
;
// used to temply save mkldnn weights
saveWgt
(
parameters_
[
DNN
],
dnnWgts
);
// TODO(TJ): cvtWgtToPaddle
for
(
size_t
i
=
0
;
i
<
parameters_
[
DNN
].
size
();
++
i
)
{
const
VectorPtr
&
dnn
=
parameters_
[
DNN
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
const
VectorPtr
&
ref
=
parameters_
[
REF
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
VLOG
(
lvl_
)
<<
"Mkldnn Output weight "
<<
parameters_
[
DNN
][
i
]
->
getName
();
printVector
(
dnn
);
VLOG
(
lvl_
)
<<
"Reference Output weight "
<<
parameters_
[
REF
][
i
]
->
getName
();
printVector
(
ref
);
double
delta
=
compareVector
(
dnn
,
ref
);
EXPECT_LE
(
fabs
(
delta
),
eps_
);
}
VLOG
(
DNN_TESTS_DETAILS
)
<<
"Restore dnn weights before comapre"
;
restoreWgt
(
dnnWgts
,
parameters_
[
DNN
]);
}
void
MkldnnTester
::
saveWgt
(
const
vector
<
ParameterPtr
>&
from
,
vector
<
VectorPtr
>&
to
)
{
const
bool
useGpu
=
false
;
to
.
resize
(
from
.
size
());
for
(
size_t
i
=
0
;
i
<
to
.
size
();
++
i
)
{
const
VectorPtr
&
wgt
=
from
[
i
]
->
getBuf
(
PARAMETER_VALUE
);
to
[
i
]
=
Vector
::
create
(
wgt
->
getSize
(),
useGpu
);
to
[
i
]
->
copyFrom
(
*
wgt
);
}
}
void
MkldnnTester
::
restoreWgt
(
const
vector
<
VectorPtr
>&
from
,
vector
<
ParameterPtr
>&
to
)
{
CHECK_EQ
(
from
.
size
(),
to
.
size
());
for
(
size_t
i
=
0
;
i
<
from
.
size
();
++
i
)
{
const
VectorPtr
&
wgt
=
to
[
i
]
->
getBuf
(
PARAMETER_VALUE
);
wgt
->
copyFrom
(
*
from
[
i
]);
}
}
// clear parameters grad
void
MkldnnTester
::
clearWgtDiffs
()
{
for
(
size_t
n
=
0
;
n
<
parameters_
.
size
();
++
n
)
{
for
(
size_t
i
=
0
;
i
<
parameters_
[
n
].
size
();
++
i
)
{
const
VectorPtr
&
grad
=
parameters_
[
n
][
i
]
->
getBuf
(
PARAMETER_GRADIENT
);
if
(
grad
)
{
grad
->
zeroMem
();
}
}
}
}
void
MkldnnTester
::
clearBotDiffs
()
{
// dnn and ref
for
(
size_t
n
=
0
;
n
<
dataLayers_
.
size
();
++
n
)
{
// all inputs layers
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
n
].
size
();
++
i
)
{
dataLayers_
[
n
][
i
]
->
getOutputGrad
()
->
zeroMem
();
}
}
}
void
MkldnnTester
::
clearBotDiffs
(
int
n
)
{
CHECK_LT
(
n
,
NUM
);
// all inputs layers
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
n
].
size
();
++
i
)
{
dataLayers_
[
n
][
i
]
->
getOutputGrad
()
->
zeroMem
();
}
}
void
MkldnnTester
::
clearTopDatas
()
{
for
(
size_t
i
=
0
;
i
<
testLayers_
.
size
();
++
i
)
{
testLayers_
[
i
]
->
getOutputValue
()
->
zeroMem
();
}
}
void
MkldnnTester
::
printTopDatas
()
{
if
(
!
log_
)
{
return
;
}
for
(
int
n
=
0
;
n
<
NUM
;
++
n
)
{
VLOG
(
lvl_
)
<<
testLayers_
[
n
]
->
getType
()
<<
" forward output TopData: "
;
printMatrix
(
testLayers_
[
n
]
->
getOutputValue
());
}
}
void
MkldnnTester
::
printMatrix
(
const
MatrixPtr
&
m
)
{
if
(
!
log_
)
{
return
;
}
#ifdef _DEBUG
std
::
ostream
str
;
m
->
print
(
str
);
VLOG
(
lvl_
)
<<
str
;
#endif
}
void
MkldnnTester
::
printVector
(
const
VectorPtr
&
v
)
{
if
(
!
log_
)
{
return
;
}
CHECK
(
v
);
CHECK
(
v
->
getData
());
const
real
*
pd
=
v
->
getData
();
const
size_t
sz
=
v
->
getSize
();
std
::
stringstream
row
;
for
(
size_t
i
=
0
;
i
<
sz
;
++
i
)
{
row
<<
pd
[
i
]
<<
", "
;
}
VLOG
(
lvl_
)
<<
row
.
str
();
}
double
MkldnnTester
::
getDelta
(
const
real
*
d1
,
const
real
*
d2
,
size_t
len
,
const
float
failRate
,
const
float
thres
)
{
double
delta
=
0
,
sum
=
0
;
int
failCnt
=
0
;
const
double
eps
=
1e-5
;
double
maxOut
=
0
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
{
double
ref
=
fabs
(
d2
[
i
]);
double
diff
=
fabs
(
d1
[
i
]
-
d2
[
i
]);
delta
+=
diff
;
sum
+=
ref
;
if
(
ref
>
eps
&&
fabs
(
d1
[
i
])
>
eps
&&
diff
/
ref
>
thres
)
{
maxOut
=
std
::
max
(
maxOut
,
diff
/
ref
);
failCnt
++
;
}
}
EXPECT_TRUE
(
std
::
isnormal
(
sum
));
EXPECT_FALSE
(
std
::
isinf
(
sum
));
EXPECT_FALSE
(
std
::
isnan
(
delta
));
VLOG
(
DNN_TESTS_MORE
)
<<
"reference avg data: "
<<
sum
/
len
<<
", delta: "
<<
delta
/
sum
<<
", failCnt:"
<<
failCnt
;
return
(
failCnt
/
(
float
)
len
)
>
failRate
?
maxOut
:
delta
/
sum
;
}
double
MkldnnTester
::
compareMatrix
(
const
MatrixPtr
&
m1
,
const
MatrixPtr
&
m2
)
{
CHECK_EQ
(
m1
->
getElementCnt
(),
m2
->
getElementCnt
());
return
getDelta
(
m1
->
getData
(),
m2
->
getData
(),
m1
->
getElementCnt
());
}
double
MkldnnTester
::
compareVector
(
const
VectorPtr
&
v1
,
const
VectorPtr
&
v2
)
{
CHECK_EQ
(
v1
->
getSize
(),
v2
->
getSize
());
return
getDelta
(
v1
->
getData
(),
v2
->
getData
(),
v1
->
getSize
());
}
void
MkldnnTester
::
runOnce
()
{
// test forward
randomBotDatas
();
dnnLayer_
->
forward
(
PASS_TRAIN
);
refLayer_
->
forward
(
PASS_TRAIN
);
checkForward
();
// test backward
randomTopDiffs
();
dnnLayer_
->
backward
(
nullptr
);
refLayer_
->
backward
(
nullptr
);
checkBackwardData
();
checkBackwardWgts
();
// clear buffers
// ref code will addto the diff, dnn code will writeto it
clearBotDiffs
(
REF
);
// below two should be coverd by test layers
// clearTopDatas();
// clearWgtDiffs();
}
void
MkldnnTester
::
run
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
,
size_t
inputImgH
,
size_t
inputImgW
,
size_t
iter
,
float
epsilon
,
bool
log
,
int
level
)
{
VLOG
(
DNN_TESTS
)
<<
"Test MKLDNN functionality: "
<<
dnn
.
layerConfig
.
type
()
<<
" vs "
<<
ref
.
layerConfig
.
type
();
ih_
=
inputImgH
;
iw_
=
inputImgW
;
iter_
=
iter
;
eps_
=
epsilon
;
log_
=
log
;
lvl_
=
level
;
// Firstly always set flag false to initial from paddle weight
TestConfig
first
=
dnn
;
// first.layerConfig.set_init_wgt_from_mkldnn(false);
// reset and run once
reset
(
first
,
ref
,
batchSize
);
randomWgtDatas
();
clearWgtDiffs
();
clearBotDiffs
();
VLOG
(
DNN_TESTS
)
<<
"Check Iteration 0"
;
runOnce
();
// firstly get the flag
bool
initWgtFromMkldnn
=
false
;
// dnn.layerConfig.has_init_wgt_from_mkldnn() &&
// dnn.layerConfig.init_wgt_from_mkldnn();
if
(
initWgtFromMkldnn
)
{
// after run once the mkldnn weight has been stored in dnnlayer
// then save the weigths and restart again
vector
<
VectorPtr
>
dnnWgts
,
refWgts
;
CHECK_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
saveWgt
(
parameters_
[
DNN
],
dnnWgts
);
saveWgt
(
parameters_
[
REF
],
refWgts
);
// restart again with flag true
reset
(
dnn
,
ref
,
batchSize
);
// restore wgt
restoreWgt
(
dnnWgts
,
parameters_
[
DNN
]);
restoreWgt
(
refWgts
,
parameters_
[
REF
]);
clearWgtDiffs
();
clearBotDiffs
();
// at least run once
runOnce
();
}
for
(
size_t
i
=
1
;
i
<
iter_
;
++
i
)
{
VLOG
(
DNN_TESTS
)
<<
"Check Iteration "
<<
i
;
runOnce
();
}
}
}
// namespace paddle
paddle/gserver/tests/MkldnnTester.h
0 → 100644
浏览文件 @
ec9009f3
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "LayerGradUtil.h"
#include "paddle/gserver/layers/MkldnnBase.h"
namespace
paddle
{
/**
* @brief test the functionality of Mkldnnlayers
* refer to paddle original function
*/
class
MkldnnTester
{
enum
{
DNN
=
0
,
REF
=
1
,
NUM
=
2
,
};
protected:
std
::
vector
<
TestConfig
>
configs_
;
vector
<
string
>
layerNames_
;
vector
<
vector
<
DataLayerPtr
>>
dataLayers_
;
vector
<
vector
<
Argument
>>
datas_
;
vector
<
LayerMap
>
layerMaps_
;
vector
<
vector
<
ParameterPtr
>>
parameters_
;
vector
<
LayerPtr
>
testLayers_
;
LayerPtr
dnnLayer_
,
refLayer_
;
/// run some iterations, all the result should pass
size_t
iter_
;
/// whether to print out the details
bool
log_
;
/// vlog level to print the matrix details datas
int
lvl_
;
/// epsilon
float
eps_
;
/// input image size, default 1
size_t
ih_
,
iw_
;
public:
explicit
MkldnnTester
(
size_t
iter
=
3
,
float
epsilon
=
1e-4
)
{
iter_
=
iter
;
eps_
=
epsilon
;
log_
=
false
;
lvl_
=
DNN_TESTS_MORE
;
}
~
MkldnnTester
()
{}
public:
void
run
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
,
size_t
inputImgH
=
1
,
size_t
inputImgW
=
1
,
size_t
iter
=
3
,
float
epsilon
=
1e-4
,
bool
log
=
false
,
int
level
=
DNN_TESTS_MORE
);
void
setLogLevel
(
int
lvl
)
{
lvl_
=
lvl
;
}
private:
void
reset
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
);
void
setInputImgSize
();
void
runOnce
();
void
randomWgtDatas
();
void
randomBotDatas
();
void
randomTopDiffs
();
void
checkForward
();
void
checkBackwardData
();
void
checkBackwardWgts
();
void
clearWgtDiffs
();
void
clearBotDiffs
();
void
clearBotDiffs
(
int
n
);
// clear specific layer
void
clearTopDatas
();
void
printTopDatas
();
void
printMatrix
(
const
MatrixPtr
&
m
);
void
printVector
(
const
VectorPtr
&
v
);
void
saveWgt
(
const
vector
<
ParameterPtr
>&
from
,
vector
<
VectorPtr
>&
to
);
void
restoreWgt
(
const
vector
<
VectorPtr
>&
from
,
vector
<
ParameterPtr
>&
to
);
double
compareMatrix
(
const
MatrixPtr
&
m1
,
const
MatrixPtr
&
m2
);
double
compareVector
(
const
VectorPtr
&
v1
,
const
VectorPtr
&
v2
);
/**
* Get delta percent
* if many(>failRate) wrong(abs(dnn-ref)/abs(ref)>thres) points return the
* max(diff/ref)
* else return sum(abs(a-b)) / sum(abs(b)) should smaller than eps
*/
double
getDelta
(
const
real
*
d1
,
const
real
*
d2
,
size_t
len
,
const
float
failRate
=
1e-3
,
const
float
thres
=
0.1
);
};
}
// namespace paddle
paddle/gserver/tests/test_Mkldnn.cpp
0 → 100644
浏览文件 @
ec9009f3
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <string>
#include <vector>
#include "MkldnnTester.h"
#include "ModelConfig.pb.h"
using
namespace
paddle
;
// NOLINT
DECLARE_bool
(
thread_local_rand_use_global_seed
);
DECLARE_bool
(
use_gpu
);
DECLARE_bool
(
use_mkldnn
);
struct
testFCDesc
{
int
bs
;
int
ic
;
int
oc
;
int
ih
,
iw
;
// oh == ow == 1
};
void
testFcLayer
(
const
testFCDesc
&
pm
)
{
const
std
::
string
compareTypes
[]
=
{
"mkldnn_fc"
,
"fc"
};
TestConfig
cfg
;
cfg
.
layerConfig
.
set_type
(
compareTypes
[
0
]);
cfg
.
layerConfig
.
set_size
(
pm
.
oc
);
cfg
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
/* size of input layer= */
size_t
(
pm
.
ic
*
pm
.
ih
*
pm
.
iw
),
/* size of weight= */
size_t
(
pm
.
oc
*
pm
.
ic
*
pm
.
ih
*
pm
.
iw
)});
cfg
.
layerConfig
.
add_inputs
();
MkldnnTester
tester
;
for
(
auto
biasSize
:
{
pm
.
oc
,
0
})
{
cfg
.
biasSize
=
biasSize
;
TestConfig
ref
=
cfg
;
ref
.
layerConfig
.
set_type
(
compareTypes
[
1
]);
for
(
auto
bs
:
{
pm
.
bs
,
1
})
{
tester
.
run
(
cfg
,
ref
,
bs
,
pm
.
ih
,
pm
.
iw
);
}
}
}
TEST
(
MkldnnLayer
,
fcLayer
)
{
testFcLayer
({
2
,
2
,
3
,
1
,
1
});
/*
testFcLayer({16, 32, 64, 1, 1});
testFcLayer({8, 16, 32, 13, 13});
testFcLayer({4, 12, 18, 13, 11});
testFcLayer({2, 64, 32, 16, 16});
testFcLayer({15, 3, 6, 16, 16});*/
}
// TODO(TJ): add branch test
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
FLAGS_use_gpu
=
false
;
FLAGS_use_mkldnn
=
true
;
initMain
(
argc
,
argv
);
FLAGS_thread_local_rand_use_global_seed
=
true
;
srand
(
1
);
return
RUN_ALL_TESTS
();
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录