mot_sde_infer.py 12.7 KB
Newer Older
W
wangguanzhong 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
G
George Ni 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
F
Feng Ni 已提交
20 21 22 23
from collections import defaultdict
import paddle

from benchmark_utils import PaddleInferBenchmark
W
wangguanzhong 已提交
24 25 26
from preprocess import decode_image
from utils import argsparser, Timer, get_current_memory_mb
from infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig
F
Feng Ni 已提交
27

W
wangguanzhong 已提交
28 29 30 31 32 33 34 35
# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from pptracking.python.mot import JDETracker
from pptracking.python.mot.utils import MOTTimer, write_mot_results
from pptracking.python.visualize import plot_tracking, plot_tracking_dict
G
George Ni 已提交
36 37

# Global dictionary
W
wangguanzhong 已提交
38 39 40 41 42
MOT_SDE_SUPPORT_MODELS = {
    'DeepSORT',
    'ByteTrack',
    'YOLO',
}
G
George Ni 已提交
43 44


45
class SDE_Detector(Detector):
G
George Ni 已提交
46 47 48
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
W
wangguanzhong 已提交
49
        tracker_config (str): tracker config path
G
George Ni 已提交
50
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
51
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
W
wangguanzhong 已提交
52
        batch_size (int): size of pre batch in inference
G
George Ni 已提交
53 54 55 56 57 58 59
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
W
wangguanzhong 已提交
60
        use_dark(bool): whether to use postprocess in DarkPose
G
George Ni 已提交
61 62 63 64
    """

    def __init__(self,
                 model_dir,
W
wangguanzhong 已提交
65
                 tracker_config,
G
George Ni 已提交
66
                 device='CPU',
67
                 run_mode='paddle',
68
                 batch_size=1,
G
George Ni 已提交
69
                 trt_min_shape=1,
W
wangguanzhong 已提交
70 71
                 trt_max_shape=1280,
                 trt_opt_shape=640,
G
George Ni 已提交
72 73
                 trt_calib_mode=False,
                 cpu_threads=1,
W
wangguanzhong 已提交
74 75 76
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5):
77 78
        super(SDE_Detector, self).__init__(
            model_dir=model_dir,
G
George Ni 已提交
79
            device=device,
80 81
            run_mode=run_mode,
            batch_size=batch_size,
G
George Ni 已提交
82 83 84 85 86
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
        assert batch_size == 1, "MOT model only supports batch_size=1."
        self.det_times = Timer(with_tracker=True)
        self.num_classes = len(self.pred_config.labels)

        # tracker config
        self.tracker_config = tracker_config
        cfg = yaml.safe_load(open(self.tracker_config))['tracker']
        min_box_area = cfg.get('min_box_area', 200)
        vertical_ratio = cfg.get('vertical_ratio', 1.6)
        use_byte = cfg.get('use_byte', True)
        match_thres = cfg.get('match_thres', 0.9)
        conf_thres = cfg.get('conf_thres', 0.6)
        low_conf_thres = cfg.get('low_conf_thres', 0.1)

        self.tracker = JDETracker(
            use_byte=use_byte,
            num_classes=self.num_classes,
            min_box_area=min_box_area,
            vertical_ratio=vertical_ratio,
            match_thres=match_thres,
            conf_thres=conf_thres,
            low_conf_thres=low_conf_thres)

    def tracking(self, det_results):
        pred_dets = det_results['boxes']
        pred_embs = None
116
        pred_dets = np.concatenate(
W
wangguanzhong 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
            (pred_dets[:, 2:], pred_dets[:, 1:2], pred_dets[:, 0:1]), 1)
        # pred_dets should be 'x0, y0, x1, y1, score, cls_id'

        online_targets_dict = self.tracker.update(pred_dets, pred_embs)
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        for cls_id in range(self.num_classes):
            online_targets = online_targets_dict[cls_id]
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
                tscore = t.score
                if tlwh[2] * tlwh[3] <= self.tracker.min_box_area:
                    continue
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs[cls_id].append(tlwh)
                online_ids[cls_id].append(tid)
                online_scores[cls_id].append(tscore)
G
George Ni 已提交
138

139
        return online_tlwhs, online_scores, online_ids
140

W
wangguanzhong 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True):
        mot_results = []
        num_classes = self.num_classes
        image_list.sort()
        ids2names = self.pred_config.labels
        for frame_id, img_file in enumerate(image_list):
            batch_image_list = [img_file]  # bs=1 in MOT model
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking
                result_warmup = self.tracking(det_result)
                self.det_times.tracking_time_s.start()
                online_tlwhs, online_scores, online_ids = self.tracking(
                    det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
G
George Ni 已提交
183

184
            else:
W
wangguanzhong 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking process
                self.det_times.tracking_time_s.start()
                online_tlwhs, online_scores, online_ids = self.tracking(
                    det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

            if visual:
                if frame_id % 10 == 0:
                    print('Tracking frame {}'.format(frame_id))
                frame, _ = decode_image(img_file, {})

                im = plot_tracking_dict(
                    frame,
                    num_classes,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    ids2names=[])
                seq_name = image_list[0].split('/')[-2]
                save_dir = os.path.join(self.output_dir, seq_name)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                cv2.imwrite(
                    os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)

            mot_results.append([online_tlwhs, online_scores, online_ids])
        return mot_results

    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
231
        else:
W
wangguanzhong 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

        frame_id = 1
        timer = MOTTimer()
        results = defaultdict(list)  # support single class and multi classes
        num_classes = self.num_classes
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            if frame_id % 10 == 0:
                print('Tracking frame: %d' % (frame_id))
            frame_id += 1

            timer.tic()
            mot_results = self.predict_image([frame], visual=False)
261 262
            timer.toc()

W
wangguanzhong 已提交
263 264 265 266 267 268 269 270
            online_tlwhs, online_scores, online_ids = mot_results[0]
            for cls_id in range(num_classes):
                results[cls_id].append(
                    (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
                     online_ids[cls_id]))

            fps = 1. / timer.duration
            im = plot_tracking_dict(
271
                frame,
W
wangguanzhong 已提交
272
                num_classes,
273 274 275 276
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
W
wangguanzhong 已提交
277 278
                fps=fps,
                ids2names=[])
279

W
wangguanzhong 已提交
280 281 282 283 284
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
G
George Ni 已提交
285
        writer.release()
G
George Ni 已提交
286 287 288


def main():
W
wangguanzhong 已提交
289 290 291 292 293 294 295 296
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
    assert arch in MOT_SDE_SUPPORT_MODELS, '{} is not supported.'.format(arch)
    detector = SDE_Detector(
        FLAGS.model_dir,
        FLAGS.tracker_config,
G
George Ni 已提交
297 298
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
W
wangguanzhong 已提交
299
        batch_size=FLAGS.batch_size,
G
George Ni 已提交
300 301 302 303 304
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
W
wangguanzhong 已提交
305 306 307
        enable_mkldnn=FLAGS.enable_mkldnn,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)
G
George Ni 已提交
308 309 310

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
311
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
George Ni 已提交
312 313
    else:
        # predict from image
W
wangguanzhong 已提交
314 315
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "--batch_size should be 1 in MOT models."
G
George Ni 已提交
316
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
W
wangguanzhong 已提交
317
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
G
George Ni 已提交
318 319 320 321 322

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
323 324 325
            model_dir = FLAGS.model_dir
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
G
George Ni 已提交
326 327
                'precision': mode.split('_')[-1]
            }
W
wangguanzhong 已提交
328
            bench_log(detector, img_list, model_info, name='MOT')
G
George Ni 已提交
329 330 331 332 333 334 335 336 337 338 339 340


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()