trainer.py 14.8 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import random
import datetime
import numpy as np
from PIL import Image

import paddle
from paddle.distributed import ParallelEnv
from paddle.static import InputSpec

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
from ppdet.utils.visualizer import visualize_results
from ppdet.metrics import Metric, COCOMetric, VOCMetric, get_categories, get_infer_results
import ppdet.utils.stats as stats

from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer
from .export_utils import _dump_infer_config

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['Trainer']


class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
51
        self.optimizer = None
K
Kaipeng Deng 已提交
52 53 54

        # build model
        self.model = create(cfg.architecture)
55 56

        # model slim build
57
        if 'slim' in cfg and cfg.slim:
58 59 60 61 62
            if self.mode == 'train':
                self.load_weights(cfg.pretrain_weights, cfg.weight_type)
            slim = create(cfg.slim)
            slim(self.model)

K
Kaipeng Deng 已提交
63 64
        # build data loader
        self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]
K
Kaipeng Deng 已提交
65
        if self.mode == 'train':
K
Kaipeng Deng 已提交
66 67
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)
K
Kaipeng Deng 已提交
68 69 70 71 72 73 74 75
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
76 77 78 79 80 81 82 83

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr,
                                                        self.model.parameters())

K
Kaipeng Deng 已提交
84 85 86
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

K
Kaipeng Deng 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        self.status = {}

        self.start_epoch = 0
        self.end_epoch = cfg.epoch

        self._weights_loaded = False

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
        else:
            self._callbacks = []
            self._compose_callback = None

    def _init_metrics(self):
G
Guanghua Yu 已提交
113 114 115
        if self.mode == 'test':
            self._metrics = []
            return
K
Kaipeng Deng 已提交
116
        if self.cfg.metric == 'COCO':
W
wangxinxin08 已提交
117 118 119 120 121
            # TODO: bias should be unified
            self._metrics = [
                COCOMetric(
                    anno_file=self.dataset.get_anno(), bias=self.cfg.bias)
            ]
K
Kaipeng Deng 已提交
122 123 124 125 126 127 128
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
                    anno_file=self.dataset.get_anno(),
                    class_num=self.cfg.num_classes,
                    map_type=self.cfg.map_type)
            ]
K
Kaipeng Deng 已提交
129
        else:
K
Kaipeng Deng 已提交
130 131
            logger.warn("Metric not support for metric type {}".format(
                self.cfg.metric))
K
Kaipeng Deng 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights(self, weights, weight_type='pretrain'):
        assert weight_type in ['pretrain', 'resume', 'finetune'], \
                "weight_type can only be 'pretrain', 'resume', 'finetune'"
        if weight_type == 'resume':
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
            logger.debug("Resume weights of epoch {}".format(self.start_epoch))
        else:
            self.start_epoch = 0
            load_pretrain_weight(self.model, weights,
                                 self.cfg.get('load_static_weights', False),
                                 weight_type)
            logger.debug("Load {} weights {} to start training".format(
                weight_type, weights))
        self._weights_loaded = True

K
Kaipeng Deng 已提交
168
    def train(self, validate=False):
K
Kaipeng Deng 已提交
169 170 171 172 173 174
        assert self.mode == 'train', "Model not in 'train' mode"

        # if no given weights loaded, load backbone pretrain weights as default
        if not self._weights_loaded:
            self.load_weights(self.cfg.pretrain_weights)

175
        model = self.model
K
Kaipeng Deng 已提交
176 177
        if self._nranks > 1:
            model = paddle.DataParallel(self.model)
178 179
        else:
            model = self.model
K
Kaipeng Deng 已提交
180

K
Kaipeng Deng 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
194
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
195 196 197
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
198
            model.train()
K
Kaipeng Deng 已提交
199 200 201 202 203 204 205
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                self._compose_callback.on_step_begin(self.status)

                # model forward
K
Kaipeng Deng 已提交
206
                outputs = model(data)
K
Kaipeng Deng 已提交
207 208 209 210 211 212 213 214 215 216
                loss = outputs['loss']

                # model backward
                loss.backward()
                self.optimizer.step()
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
217
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
218 219 220 221
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
F
Feng Ni 已提交
222
                iter_tic = time.time()
K
Kaipeng Deng 已提交
223

K
Kaipeng Deng 已提交
224 225
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
            if validate and (self._nranks < 2 or self._local_rank == 0) \
                    and (epoch_id % self.cfg.snapshot_epoch == 0 \
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
                with paddle.no_grad():
                    self._eval_with_loader(self._eval_loader)

    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
244 245 246
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
247 248 249
        self.status['mode'] = 'eval'
        self.model.eval()
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic
        self._compose_callback.on_epoch_end(self.status)

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
273 274 275
    def evaluate(self):
        self._eval_with_loader(self.loader)

K
Kaipeng Deng 已提交
276 277 278 279 280 281 282
    def predict(self, images, draw_threshold=0.5, output_dir='output'):
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
283
        clsid2catid, catid2name = get_categories(self.cfg.metric, anno_file)
K
Kaipeng Deng 已提交
284

K
Kaipeng Deng 已提交
285 286 287
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
K
Kaipeng Deng 已提交
288 289 290 291 292 293
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
294 295
            for key, value in outs.items():
                outs[key] = value.numpy()
K
Kaipeng Deng 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308

            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
                end = start + bbox_num[i]

                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
309 310 311
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
                image = visualize_results(image, bbox_res, mask_res, segm_res,
K
Kaipeng Deng 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
                                          int(outs['im_id']), catid2name,
                                          draw_threshold)

                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

    def export(self, output_dir='output_inference'):
333
        self.model.eval()
K
Kaipeng Deng 已提交
334 335 336 337 338 339 340 341 342 343 344
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_shape = None
        if 'inputs_def' in self.cfg['TestReader']:
            inputs_def = self.cfg['TestReader']['inputs_def']
            image_shape = inputs_def.get('image_shape', None)
        if image_shape is None:
            image_shape = [3, None, None]

K
Kaipeng Deng 已提交
345 346
        self.model.eval()

K
Kaipeng Deng 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
                shape=[None] + image_shape, name='image'),
            "im_shape": InputSpec(
                shape=[None, 2], name='im_shape'),
            "scale_factor": InputSpec(
                shape=[None, 2], name='scale_factor')
        }]

        # dy2st and save model
        static_model = paddle.jit.to_static(self.model, input_spec=input_spec)
363 364 365 366 367 368 369 370 371
        # NOTE: dy2st do not pruned program, but jit.save will prune program
        # input spec, prune input spec here and save with pruned input spec
        pruned_input_spec = self._prune_input_spec(
            input_spec, static_model.forward.main_program,
            static_model.forward.outputs)
        paddle.jit.save(
            static_model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
K
Kaipeng Deng 已提交
372
        logger.info("Export model and saved in {}".format(save_dir))
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

    def _prune_input_spec(self, input_spec, program, targets):
        # try to prune static program to figure out pruned input spec
        # so we perform following operations in static mode
        paddle.enable_static()
        pruned_input_spec = [{}]
        program = program.clone()
        program = program._prune(targets=targets)
        global_block = program.global_block()
        for name, spec in input_spec[0].items():
            try:
                v = global_block.var(name)
                pruned_input_spec[0][name] = spec
            except Exception:
                pass
        paddle.disable_static()
        return pruned_input_spec