README.md 20.5 KB
Newer Older
1 2
English | [简体中文](README_cn.md)

G
Guanghua Yu 已提交
3
# PP-PicoDet
G
Guanghua Yu 已提交
4

G
Guanghua Yu 已提交
5
![](../../docs/images/picedet_demo.jpeg)
G
Guanghua Yu 已提交
6 7
## Introduction

8
We developed a series of lightweight models, named `PP-PicoDet`. Because of the excellent performance, our models are very suitable for deployment on mobile or CPU. For more details, please refer to our [report on arXiv](https://arxiv.org/abs/2111.00902).
G
Guanghua Yu 已提交
9

G
Guanghua Yu 已提交
10
- 🌟 Higher mAP: the **first** object detectors that surpass mAP(0.5:0.95) **30+** within 1M parameters when the input size is 416.
G
Guanghua Yu 已提交
11
- 🚀 Faster latency: 150FPS on mobile ARM CPU.
12
- 😊 Deploy friendly: support PaddleLite/MNN/NCNN/OpenVINO and provide C++/Python/Android implementation.
13
- 😍 Advanced algorithm: use the most advanced algorithms and offer innovation, such as ESNet, CSP-PAN, SimOTA with VFL, etc.
14

G
Guanghua Yu 已提交
15 16 17 18 19

<div align="center">
  <img src="../../docs/images/picodet_map.png" width='600'/>
</div>

20
### Comming Soon
G
Guanghua Yu 已提交
21 22 23
- [ ] More series of model, such as smaller or larger model.
- [ ] Pretrained models for more scenarios.
- [ ] More features in need.
G
Guanghua Yu 已提交
24

G
Guanghua Yu 已提交
25
## Benchmark
G
Guanghua Yu 已提交
26

27 28
| Model     | Input size | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params<br><sup>(M) | FLOPS<br><sup>(G) | Latency<sup><small>[NCNN](#latency)</small><sup><br><sup>(ms) | Latency<sup><small>[Lite](#latency)</small><sup><br><sup>(ms) |  Download  | Config |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------: | :--------------------------------------- |
29
| PicoDet-S |  320*320   |          27.1           |        41.4        |        0.99        |       0.73        |              8.13               |            **6.65**             | [model](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_s_320_coco.yml) |
G
Guanghua Yu 已提交
30
| PicoDet-S |  416*416   |          30.7           |        45.8        |        0.99        |       1.24        |              12.37              |            **9.82**             | [model](https://paddledet.bj.bcebos.com/models/picodet_s_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_s_416_coco.yml) |
31
| PicoDet-M |  320*320   |          30.9           |        45.7        |        2.15        |       1.48        |              11.27              |            **9.61**             | [model](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_m_320_coco.yml) |
G
Guanghua Yu 已提交
32
| PicoDet-M |  416*416   |          34.8           |        50.5        |        2.15        |       2.50        |              17.39              |            **15.88**            | [model](https://paddledet.bj.bcebos.com/models/picodet_m_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_m_416_coco.yml) |
33 34 35
| PicoDet-L |  320*320   |          32.9           |        48.2        |        3.30        |       2.23        |              15.26              |            **13.42**            | [model](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_l_320_coco.yml) |
| PicoDet-L |  416*416   |          36.6           |        52.5        |        3.30        |       3.76        |              23.36              |            **21.85**            | [model](https://paddledet.bj.bcebos.com/models/picodet_l_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_l_416_coco.yml) |
| PicoDet-L |  640*640   |          40.9           |        57.6        |        3.30        |       8.91        |              54.11              |            **50.55**            | [model](https://paddledet.bj.bcebos.com/models/picodet_l_640_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_640_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_l_640_coco.yml) |
36

37
#### More Configs
G
Guanghua Yu 已提交
38

39 40
| Model     | Input size | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params<br><sup>(M) | FLOPS<br><sup>(G) | Latency<sup><small>[NCNN](#latency)</small><sup><br><sup>(ms) | Latency<sup><small>[Lite](#latency)</small><sup><br><sup>(ms) |  Download  | Config |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------: | :--------------------------------------- |
41 42 43
| PicoDet-Shufflenetv2 1x      |  416*416   |          30.0           |        44.6        |        1.17        |       1.53        |              15.06              |            **10.63**            |      [model](https://paddledet.bj.bcebos.com/models/picodet_shufflenetv2_1x_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_shufflenetv2_1x_416_coco.log)      | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/more_config/picodet_shufflenetv2_1x_416_coco.yml)      |
| PicoDet-MobileNetv3-large 1x |  416*416   |          35.6           |        52.0        |        3.55        |       2.80        |              20.71              |            **17.88**            | [model](https://paddledet.bj.bcebos.com/models/picodet_mobilenetv3_large_1x_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_mobilenetv3_large_1x_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/more_config/picodet_mobilenetv3_large_1x_416_coco.yml) |
| PicoDet-LCNet 1.5x           |  416*416   |          36.3           |        52.2        |        3.10        |       3.85        |              21.29              |            **20.8**             |           [model](https://paddledet.bj.bcebos.com/models/picodet_lcnet_1_5x_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_lcnet_1_5x_416_coco.log)           | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/more_config/picodet_lcnet_1_5x_416_coco.yml)           |
G
Guanghua Yu 已提交
44 45
| PicoDet-LCNet 1.5x           |  640*640   |          40.6           |        57.4        |        3.10        |       -        |              -              |            -             |           [model](https://paddledet.bj.bcebos.com/models/picodet_lcnet_1_5x_640_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_lcnet_1_5x_640_coco.log)           | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/more_config/picodet_lcnet_1_5x_640_coco.yml)           |
| PicoDet-R18           |  640*640   |          40.7           |        57.2        |        11.10        |       -        |              -              |            -             |           [model](https://paddledet.bj.bcebos.com/models/picodet_r18_640_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_r18_640_coco.log)           | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/more_config/picodet_r18_640_coco.yml)           |
46

47

G
Guanghua Yu 已提交
48 49 50
<details open>
<summary><b>Table Notes:</b></summary>

G
Guanghua Yu 已提交
51
- <a name="latency">Latency:</a> All our models test on `Qualcomm Snapdragon 865(4xA77+4xA55)` with 4 threads by arm8 and with FP16. In the above table, test latency on [NCNN](https://github.com/Tencent/ncnn) and `Lite`->[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite).  And testing latency with code: [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark).
G
Guanghua Yu 已提交
52 53 54 55
- PicoDet is trained on COCO train2017 dataset and evaluated on COCO val2017.
- PicoDet used 4 or 8 GPUs for training and all checkpoints are trained with default settings and hyperparameters.

</details>
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
#### Benchmark of Other Models

| Model     | Input size | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params<br><sup>(M) | FLOPS<br><sup>(G) | Latency<sup><small>[NCNN](#latency)</small><sup><br><sup>(ms) |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: |
| YOLOv3-Tiny |  416*416   |          16.6           |        33.1      |        8.86        |       5.62        |             25.42               |
| YOLOv4-Tiny |  416*416   |          21.7           |        40.2        |        6.06           |       6.96           |             23.69               |
| PP-YOLO-Tiny |  320*320       |          20.6         |        -              |   1.08             |    0.58             |    6.75                           |  
| PP-YOLO-Tiny |  416*416   |          22.7          |    -               |    1.08               |    1.02             |    10.48                          |  
| Nanodet-M |  320*320      |          20.6            |    -               |    0.95               |    0.72             |    8.71                           |  
| Nanodet-M |  416*416   |          23.5             |    -               |    0.95               |    1.2              |  13.35                          |
| Nanodet-M 1.5x |  416*416   |          26.8        |    -                  | 2.08               |    2.42             |    15.83                          |
| YOLOX-Nano     |  416*416   |          25.8          |    -               |    0.91               |    1.08             |    19.23                          |
| YOLOX-Tiny     |  416*416   |          32.8          |    -               |    5.06               |    6.45             |    32.77                          |
| YOLOv5n |  640*640       |          28.4             |    46.0            |    1.9                |    4.5              |    40.35                          |
| YOLOv5s |  640*640       |          37.2             |    56.0            |    7.2                |    16.5             |    78.05                          |

G
Guanghua Yu 已提交
73

G
Guanghua Yu 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
## Quick Start

<details open>
<summary>Requirements:</summary>

- PaddlePaddle >= 2.1.2

</details>

<details>
<summary>Installation</summary>

- [Installation guide](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/docs/tutorials/INSTALL.md)
- [Prepare dataset](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/docs/tutorials/PrepareDataSet_en.md)

</details>

<details>
<summary>Training and Evaluation</summary>

- Training model on single-GPU:

```shell
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0
python tools/train.py -c configs/picodet/picodet_s_320_coco.yml --eval
```

- Training model on multi-GPU:


```shell
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/picodet/picodet_s_320_coco.yml --eval
```

- Evaluation:

```shell
python tools/eval.py -c configs/picodet/picodet_s_320_coco.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams
```

- Infer:

```shell
python tools/infer.py -c configs/picodet/picodet_s_320_coco.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams
```

Detail also can refer to [Quick start guide](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/docs/tutorials/GETTING_STARTED.md).

</details>


G
Guanghua Yu 已提交
130 131
## Deployment

132
### Export and Convert Model
G
Guanghua Yu 已提交
133 134

<details>
G
Guanghua Yu 已提交
135
<summary>1. Export model (click to expand)</summary>
G
Guanghua Yu 已提交
136 137 138 139 140 141 142 143 144 145

```shell
cd PaddleDetection
python tools/export_model.py -c configs/picodet/picodet_s_320_coco.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams --output_dir=inference_model
```

</details>

<details>
G
Guanghua Yu 已提交
146
<summary>2. Convert to PaddleLite (click to expand)</summary>
G
Guanghua Yu 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

- Install Paddlelite>=2.10.rc:

```shell
pip install paddlelite
```

- Convert model:

```shell
# FP32
paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco --valid_targets=arm --optimize_out=picodet_s_320_coco_fp32
# FP16
paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco --valid_targets=arm --optimize_out=picodet_s_320_coco_fp16 --enable_fp16=true
```

</details>

<details>
G
Guanghua Yu 已提交
166
<summary>3. Convert to ONNX (click to expand)</summary>
G
Guanghua Yu 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

- Install [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX) >= 0.7 and ONNX > 1.10.1, for details, please refer to [Tutorials of Export ONNX Model](../../deploy/EXPORT_ONNX_MODEL.md)

```shell
pip install onnx
pip install paddle2onnx
```

- Convert model:

```shell
paddle2onnx --model_dir output_inference/picodet_s_320_coco/ \
            --model_filename model.pdmodel  \
            --params_filename model.pdiparams \
            --opset_version 11 \
            --save_file picodet_s_320_coco.onnx
```

- Simplify ONNX model: use onnx-simplifier to simplify onnx model.

  - Install onnx-simplifier >= 0.3.6:
  ```shell
  pip install onnx-simplifier
  ```
  - simplify onnx model:
  ```shell
  python -m onnxsim picodet_s_320_coco.onnx picodet_s_processed.onnx
  ```

</details>

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
- Deploy models

| Model     | Input size | ONNX  | Paddle Lite(fp32) | Paddle Lite(fp16) |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: |
| PicoDet-S |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320_fp16.tar) |
| PicoDet-S |  416*416   |  [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_fp16.tar) |
| PicoDet-M |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320_fp16.tar) |
| PicoDet-M |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416_fp16.tar) |
| PicoDet-L |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320_fp16.tar) |
| PicoDet-L |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) |
| PicoDet-L |  640*640   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640_fp16.tar) |
| PicoDet-Shufflenetv2 1x      |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_shufflenetv2_1x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_shufflenetv2_1x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_shufflenetv2_1x_fp16.tar) |
| PicoDet-MobileNetv3-large 1x |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_mobilenetv3_large_1x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_mobilenetv3_large_1x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_mobilenetv3_large_1x_fp16.tar) |
| PicoDet-LCNet 1.5x           |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_lcnet_1_5x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_lcnet_1_5x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_lcnet_1_5x_fp16.tar) |


G
Guanghua Yu 已提交
214 215 216 217
### Deploy

- PaddleInference demo [Python](../../deploy/python) & [C++](../../deploy/cpp)
- [PaddleLite C++ demo](../../deploy/lite)
G
Guanghua Yu 已提交
218 219
- [NCNN C++/Python demo](../../deploy/third_engine/demo_ncnn)
- [MNN C++/Python demo](../../deploy/third_engine/demo_mnn)
G
Guanghua Yu 已提交
220
- [OpenVINO C++ demo](../../deploy/third_engine/demo_openvino)
G
Guanghua Yu 已提交
221 222
- [Android demo(NCNN)](https://github.com/JiweiMaster/PP-PicoDet-Android-Demo)
- [Android demo(Paddle Lite)](https://github.com/marsplus-wjh/Picodet-PaddleLite-AndroidDemo)
G
Guanghua Yu 已提交
223 224


225
Android demo visualization:
G
Guanghua Yu 已提交
226 227 228 229
<div align="center">
  <img src="../../docs/images/picodet_android_demo1.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo2.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo3.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo4.jpg" height="500px" >
</div>

G
Guanghua Yu 已提交
230

231
## Quantization
G
Guanghua Yu 已提交
232

G
Guanghua Yu 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246
<details open>
<summary>Requirements:</summary>

- PaddlePaddle >= 2.2.0rc0
- PaddleSlim >= 2.2.0rc0

**Install:**

```shell
pip install paddleslim==2.2.0rc0
```

</details>

G
Guanghua Yu 已提交
247
<details>
G
Guanghua Yu 已提交
248
<summary>Quant aware (click to expand)</summary>
G
Guanghua Yu 已提交
249 250 251 252 253 254 255 256

Configure the quant config and start training:

```shell
python tools/train.py -c configs/picodet/picodet_s_320_coco.yml \
          --slim_config configs/slim/quant/picodet_s_quant.yml --eval
```

257 258
- More detail can refer to [slim document](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim)

G
Guanghua Yu 已提交
259 260 261
</details>

<details>
G
Guanghua Yu 已提交
262
<summary>Post quant (click to expand)</summary>
G
Guanghua Yu 已提交
263 264 265 266

Configure the post quant config and start calibrate model:

```shell
G
Guanghua Yu 已提交
267 268
python tools/post_quant.py -c configs/picodet/picodet_s_320_coco.yml \
          --slim_config configs/slim/post_quant/picodet_s_ptq.yml
G
Guanghua Yu 已提交
269 270
```

271
- Notes: Now the accuracy of post quant is abnormal and this problem is being solved.
G
Guanghua Yu 已提交
272

G
Guanghua Yu 已提交
273
</details>
G
Guanghua Yu 已提交
274

M
minghaoBD 已提交
275 276 277 278 279
## Unstructured Pruning

<details open>
<summary>Toturial:</summary>

G
Guanghua Yu 已提交
280
Please refer this [documentation](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/pruner/README.md) for details such as requirements, training and deployment.
M
minghaoBD 已提交
281 282 283

</details>

G
Guanghua Yu 已提交
284 285 286 287
## Application

- **Pedestrian detection:** model zoo of `PicoDet-S-Pedestrian` please refer to [PP-TinyPose](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/keypoint/tiny_pose#%E8%A1%8C%E4%BA%BA%E6%A3%80%E6%B5%8B%E6%A8%A1%E5%9E%8B)

288 289
- **Mainbody detection:** model zoo of `PicoDet-L-Mainbody` please refer to [mainbody detection](./application/mainbody_detection/README.md)

G
Guanghua Yu 已提交
290 291 292 293 294 295 296 297 298
## FAQ

<details>
<summary>Out of memory error.</summary>

Please reduce the `batch_size` of `TrainReader` in config.

</details>

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
<details>
<summary>How to transfer learning.</summary>

Please reset `pretrain_weights` in config, which trained on coco. Such as:
```yaml
pretrain_weights: https://paddledet.bj.bcebos.com/models/picodet_l_640_coco.pdparams
```

</details>

<details>
<summary>The transpose operator is time-consuming on some hardware.</summary>

Please use `PicoDet-LCNet` model, which has fewer `transpose` operators.

</details>


W
Wenyu 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
<details>
<summary>How to count model parameters.</summary>

You can insert below code at [here](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/engine/trainer.py#L141) to count learnable parameters.

```python
params = sum([
    p.numel() for n, p in self.model. named_parameters()
    if all([x not in n for x in ['_mean', '_variance']])
]) # exclude BatchNorm running status
print('params: ', params)
```

</details>

G
Guanghua Yu 已提交
332 333
## Cite PP-PicoDet
If you use PicoDet in your research, please cite our work by using the following BibTeX entry:
G
Guanghua Yu 已提交
334
```
G
Guanghua Yu 已提交
335 336 337 338 339 340 341 342
@misc{yu2021pppicodet,
      title={PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices},
      author={Guanghua Yu and Qinyao Chang and Wenyu Lv and Chang Xu and Cheng Cui and Wei Ji and Qingqing Dang and Kaipeng Deng and Guanzhong Wang and Yuning Du and Baohua Lai and Qiwen Liu and Xiaoguang Hu and Dianhai Yu and Yanjun Ma},
      year={2021},
      eprint={2111.00902},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
G
Guanghua Yu 已提交
343 344

```