未验证 提交 f3b4c238 编写于 作者: M minghaoBD 提交者: GitHub

Unstructured prune (#4653) (#4675)

* unstructured prune for picodet
上级 570ec45e
......@@ -267,6 +267,15 @@ python tools/post_quant.py -c configs/picodet/picodet_s_320_coco.yml \
</details>
## Unstructured Pruning
<details open>
<summary>Toturial:</summary>
Please refer this [documentation](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/README_PRUNER.md) for details such as requirements, training and deployment.
</details>
## Application
- **Pedestrian detection:** model zoo of `PicoDet-S-Pedestrian` please refer to [PP-TinyPose](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/keypoint/tiny_pose#%E8%A1%8C%E4%BA%BA%E6%A3%80%E6%B5%8B%E6%A8%A1%E5%9E%8B)
......
# 非结构化稀疏在 PicoDet 上的应用教程
## 1. 介绍
在模型压缩中,常见的稀疏方式为结构化稀疏和非结构化稀疏,前者在某个特定维度(特征通道、卷积核等等)上对卷积、矩阵乘法进行剪枝操作,然后生成一个更小的模型结构,这样可以复用已有的卷积、矩阵乘计算,无需特殊实现推理算子;后者以每一个参数为单元进行稀疏化,然而并不会改变参数矩阵的形状,所以更依赖于推理库、硬件对于稀疏后矩阵运算的加速能力。我们在 PP-PicoDet (以下简称PicoDet) 模型上运用了非结构化稀疏技术,在精度损失较小时,获得了在 ARM CPU 端推理的显著性能提升。本文档会介绍如何非结构化稀疏训练 PicoDet,关于非结构化稀疏的更多介绍请参照[这里](https://github.com/PaddlePaddle/PaddleSlim/tree/develop/demo/dygraph/unstructured_pruning)
## 2. 版本要求
```bash
PaddlePaddle >= 2.1.2
PaddleSlim develop分支 (pip install paddleslim -i https://pypi.tuna.tsinghua.edu.cn/simple)
```
## 3. 数据准备
同 PicoDet
## 4. 预训练模型
在非结构化稀疏训练中,我们规定预训练模型是已经收敛完成的模型参数,所以需要额外在相关配置文件中声明。
声明预训练模型地址的配置文件:./configs/picodet/pruner/picodet_m_320_coco_pruner.yml
预训练模型地址请参照 PicoDet 文档:./configs/picodet/README.md
## 5. 自定义稀疏化的作用范围
为达到最佳推理加速效果,我们建议只对 1x1 卷积层进行稀疏化,其他层参数保持稠密。另外,有些层对于精度影响较大(例如head的最后几层,se-block的若干层),我们同样不建议对他们进行稀疏化,我们支持开发者通过传入自定义函数的形式,方便的指定哪些层不参与稀疏。例如,基于picodet_m_320这个模型,我们稀疏时跳过了后4层卷积以及6层se-block中的卷积,自定义函数如下:
```python
NORMS_ALL = [ 'BatchNorm', 'GroupNorm', 'LayerNorm', 'SpectralNorm', 'BatchNorm1D',
'BatchNorm2D', 'BatchNorm3D', 'InstanceNorm1D', 'InstanceNorm2D',
'InstanceNorm3D', 'SyncBatchNorm', 'LocalResponseNorm' ]
def skip_params_self(model):
skip_params = set()
for _, sub_layer in model.named_sublayers():
if type(sub_layer).__name__.split('.')[-1] in NORMS_ALL:
skip_params.add(sub_layer.full_name())
for param in sub_layer.parameters(include_sublayers=False):
cond_is_conv1x1 = len(param.shape) == 4 and param.shape[2] == 1 and param.shape[3] == 1
cond_is_head_m = cond_is_conv1x1 and param.shape[0] == 112 and param.shape[1] == 128
cond_is_se_block_m = param.name.split('.')[0] in ['conv2d_17', 'conv2d_18', 'conv2d_56', 'conv2d_57', 'conv2d_75', 'conv2d_76']
if not cond_is_conv1x1 or cond_is_head_m or cond_is_se_block_m:
skip_params.add(param.name)
return skip_params
```
## 6. 训练
我们已经将非结构化稀疏的核心功能通过 API 调用的方式嵌入到了训练中,所以如果您没有更细节的需求,直接运行 6.1 的命令启动训练即可。同时,为帮助您根据自己的需求更改、适配代码,我们也提供了更为详细的使用介绍,请参照 6.2。
### 6.1 直接使用
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3.7 -m paddle.distributed.launch --log_dir=log_test --gpus 0,1,2,3 tools/train.py -c configs/picodet/pruner/picodet_m_320_coco_pruner.yml --slim_config configs/slim/prune/picodet_m_unstructured_prune_75.yml --eval
```
### 6.2 详细介绍
- 自定义稀疏化的作用范围:可以参照本教程的第 5 节
- 如何添加稀疏化训练所需的 4 行代码
```python
# after constructing model and before training
# Pruner Step1: configs
configs = {
'pruning_strategy': 'gmp',
'stable_iterations': self.stable_epochs * steps_per_epoch,
'pruning_iterations': self.pruning_epochs * steps_per_epoch,
'tunning_iterations': self.tunning_epochs * steps_per_epoch,
'resume_iteration': 0,
'pruning_steps': self.pruning_steps,
'initial_ratio': self.initial_ratio,
}
# Pruner Step2: construct a pruner object
self.pruner = GMPUnstructuredPruner(
model,
ratio=self.cfg.ratio,
skip_params_func=skip_params_self, # Only pass in this value when you design your own skip_params function. And the following argument (skip_params_type) will be ignored.
skip_params_type=self.cfg.skip_params_type,
local_sparsity=True,
configs=configs)
# training
for epoch_id in range(self.start_epoch, self.cfg.epoch):
model.train()
for step_id, data in enumerate(self.loader):
# model forward
outputs = model(data)
loss = outputs['loss']
# model backward
loss.backward()
self.optimizer.step()
# Pruner Step3: step during training
self.pruner.step()
# Pruner Step4: save the sparse model
self.pruner.update_params()
# model-saving API
```
## 7. 模型评估与推理部署
这部分与 PicoDet 文档中基本一致,只是在转换到 PaddleLite 模型时,需要添加一个输入参数(sparse_model):
```bash
paddle_lite_opt --model_dir=inference_model/picodet_m_320_coco --valid_targets=arm --optimize_out=picodet_m_320_coco_fp32_sparse --sparse_model=True
```
**注意:** 目前稀疏化推理适用于 PaddleLite的 FP32 和 INT8 模型,所以执行上述命令时,请不要打开 FP16 开关。
## 8. 稀疏化结果
我们在75%和85%稀疏度下,训练得到了 FP32 PicoDet-m模型,并在 SnapDragon-835设备上实测推理速度,效果如下表。其中:
- 对于 m 模型,mAP损失1.5,获得了 34\%-58\% 的加速性能
- 同样对于 m 模型,除4线程推理速度基本持平外,单线程推理速度、mAP、模型体积均优于 s 模型。
| Model | Input size | Sparsity | mAP<sup>val<br>0.5:0.95 | Size<br><sup>(MB) | Latency single-thread<sup><small>[Lite](#latency)</small><sup><br><sup>(ms) | speed-up single-thread | Latency 4-thread<sup><small>[Lite](#latency)</small><sup><br><sup>(ms) | speed-up 4-thread | Download | SlimConfig |
| :-------- | :--------: |:--------: | :---------------------: | :----------------: | :----------------: |:----------------: | :---------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------: |
| PicoDet-m-1.0 | 320*320 | 0 | 30.9 | 8.9 | 127 | 0 | 43 | 0 | [model](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco.pdparams)&#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_m_320_coco.yml)|
| PicoDet-m-1.0 | 320*320 | 75% | 29.4 | 5.6 | **80** | 58% | **32** | 34% | [model](https://paddledet.bj.bcebos.com/models/slim/picodet_m_320__coco_sparse_75.pdparams)&#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320__coco_sparse_75.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/slim/prune/picodet_m_unstructured_prune_75.yml)|
| PicoDet-s-1.0 | 320*320 | 0 | 27.1 | 4.6 | 68 | 0 | 26 | 0 | [model](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet/picodet_s_320_coco.yml)|
| PicoDet-m-1.0 | 320*320 | 85% | 27.6 | 4.1 | **65** | 96% | **27** | 59% | [model](https://paddledet.bj.bcebos.com/models/slim/picodet_m_320__coco_sparse_85.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320__coco_sparse_85.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/slim/prune/picodet_m_unstructured_prune_85.yml)|
**注意:**
- 上述模型体积是**部署模型体积**,即 PaddleLite 转换得到的 *.nb 文件的体积。
- 加速一栏我们按照 FPS 增加百分比计算,即:$(dense\_latency - sparse\_latency) / sparse\_latency$
- 上述稀疏化训练时,我们额外添加了一种数据增强方式到 _base_/picodet_320_reader.yml,代码如下。但是不添加的话,预期mAP也不会有明显下降(<0.1),且对速度和模型体积没有影响。
```yaml
worker_num: 6
TrainReader:
sample_transforms:
- Decode: {}
- RandomCrop: {}
- RandomFlip: {prob: 0.5}
- RandomExpand: {fill_value: [123.675, 116.28, 103.53]}
- RandomDistort: {}
batch_transforms:
etc.
```
epoch: 300
LearningRate:
base_lr: 0.15
schedulers:
- !CosineDecay
max_epochs: 300
- !LinearWarmup
start_factor: 1.0
steps: 34350
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.00004
type: L2
_BASE_: [
'../../datasets/coco_detection.yml',
'../../runtime.yml',
'../_base_/picodet_esnet.yml',
'./optimizer_300e_pruner.yml',
'../_base_/picodet_320_reader.yml',
]
weights: output/picodet_m_320_coco/model_final
find_unused_parameters: True
use_ema: true
cycle_epoch: 40
snapshot_epoch: 10
pretrain_weights: https://paddledet.bj.bcebos.com/models/picodet_m_320_coco.pdparams
slim: UnstructuredPruner
UnstructuredPruner:
stable_epochs: 0
pruning_epochs: 150
tunning_epochs: 150
pruning_steps: 300
ratio: 0.75
initial_ratio: 0.15
prune_params_type: conv1x1_only
pretrain_weights: https://paddledet.bj.bcebos.com/models/picodet_m_320_coco.pdparams
slim: UnstructuredPruner
UnstructuredPruner:
stable_epochs: 0
pruning_epochs: 150
tunning_epochs: 150
pruning_steps: 300
ratio: 0.85
initial_ratio: 0.20
prune_params_type: conv1x1_only
......@@ -81,7 +81,8 @@ class Trainer(object):
# JDE only support single class MOT now.
if cfg.architecture == 'FairMOT' and self.mode == 'train':
cfg['FairMOTEmbeddingHead']['num_identities_dict'] = self.dataset.num_identities_dict
cfg['FairMOTEmbeddingHead'][
'num_identities_dict'] = self.dataset.num_identities_dict
# FairMOT support single class and multi-class MOT now.
# build model
......@@ -119,6 +120,10 @@ class Trainer(object):
self.lr = create('LearningRate')(steps_per_epoch)
self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
if self.cfg.get('unstructured_prune'):
self.pruner = create('UnstructuredPruner')(self.model,
steps_per_epoch)
self._nranks = dist.get_world_size()
self._local_rank = dist.get_rank()
......@@ -395,9 +400,10 @@ class Trainer(object):
# model backward
loss.backward()
self.optimizer.step()
curr_lr = self.optimizer.get_lr()
self.lr.step()
if self.cfg.get('unstructured_prune'):
self.pruner.step()
self.optimizer.clear_grad()
self.status['learning_rate'] = curr_lr
......@@ -414,6 +420,8 @@ class Trainer(object):
if self.use_ema:
weight = copy.deepcopy(self.model.state_dict())
self.model.set_dict(self.ema.apply())
if self.cfg.get('unstructured_prune'):
self.pruner.update_params()
self._compose_callback.on_epoch_end(self.status)
......
......@@ -15,10 +15,12 @@
from . import prune
from . import quant
from . import distill
from . import unstructured_prune
from .prune import *
from .quant import *
from .distill import *
from .unstructured_prune import *
import yaml
from ppdet.core.workspace import load_config
......@@ -56,6 +58,12 @@ def build_slim_model(cfg, slim_cfg, mode='train'):
cfg['slim_type'] = cfg.slim
cfg['model'] = slim(model)
cfg['slim'] = slim
elif slim_load_cfg['slim'] == 'UnstructuredPruner':
load_config(slim_cfg)
slim = create(cfg.slim)
cfg['slim_type'] = cfg.slim
cfg['slim'] = slim
cfg['unstructured_prune'] = True
else:
load_config(slim_cfg)
model = create(cfg.architecture)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle.utils import try_import
from ppdet.core.workspace import register, serializable
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
@register
@serializable
class UnstructuredPruner(object):
def __init__(self,
stable_epochs,
pruning_epochs,
tunning_epochs,
pruning_steps,
ratio,
initial_ratio,
prune_params_type=None):
self.stable_epochs = stable_epochs
self.pruning_epochs = pruning_epochs
self.tunning_epochs = tunning_epochs
self.ratio = ratio
self.prune_params_type = prune_params_type
self.initial_ratio = initial_ratio
self.pruning_steps = pruning_steps
def __call__(self, model, steps_per_epoch, skip_params_func=None):
paddleslim = try_import('paddleslim')
from paddleslim import GMPUnstructuredPruner
configs = {
'pruning_strategy': 'gmp',
'stable_iterations': self.stable_epochs * steps_per_epoch,
'pruning_iterations': self.pruning_epochs * steps_per_epoch,
'tunning_iterations': self.tunning_epochs * steps_per_epoch,
'resume_iteration': 0,
'pruning_steps': self.pruning_steps,
'initial_ratio': self.initial_ratio,
}
pruner = GMPUnstructuredPruner(
model,
ratio=self.ratio,
skip_params_func=skip_params_func,
prune_params_type=self.prune_params_type,
local_sparsity=True,
configs=configs)
return pruner
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册