ContextProjectionOpTest.cpp 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include "FunctionTest.h"
#include "paddle/math/Matrix.h"
18
#include "paddle/testing/TestUtil.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

using namespace paddle;  // NOLINT

void testMatrixProjectionForward(int context_start,
                                 size_t context_length,
                                 bool is_padding,
                                 size_t batch_size,
                                 size_t input_dim) {
  size_t pad = std::max(0, -context_start) +
               std::max(0, (int)(context_start + context_length - 1));
  if (pad == 0) is_padding = false;

  FunctionCompare compare("ContextProjectionForward",
                          FuncConfig()
                              .set("context_length", context_length)
                              .set("context_start", context_start)
35
                              .set("begin_pad", std::max(0, -context_start)));
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

  CpuMatrix cpu_in(batch_size, input_dim);
  cpu_in.randomizeUniform();
  GpuMatrix gpu_in(batch_size, input_dim);
  gpu_in.copyFrom(cpu_in);
  auto cpu_weight =
      is_padding ? std::make_shared<CpuMatrix>(pad, input_dim) : nullptr;
  auto gpu_weight =
      is_padding ? std::make_shared<GpuMatrix>(pad, input_dim) : nullptr;
  if (is_padding) {
    cpu_weight->randomizeUniform();
    gpu_weight->copyFrom(*cpu_weight);
  }
  IVectorPtr cpu_seq;
  generateSequenceStartPositions(batch_size, cpu_seq);
  IVectorPtr gpu_seq = IVector::create(cpu_seq->getSize(), true);
  gpu_seq->copyFrom(*cpu_seq);

  CpuMatrix cpu_out(batch_size, input_dim * context_length);
  GpuMatrix gpu_out(batch_size, input_dim * context_length);
  cpu_out.randomizeUniform();
  gpu_out.copyFrom(cpu_out);

  compare.getCpuFunction()->calc(
      {Tensor(cpu_in.getData(), Dims{batch_size, input_dim}),
       Tensor(cpu_weight ? cpu_weight->getData() : nullptr,
              Dims{pad, input_dim}),
       Tensor(reinterpret_cast<real*>(cpu_seq->getData()),
              Dims{cpu_seq->getSize()})},
      {Tensor(cpu_out.getData(), Dims{batch_size, input_dim * context_length})},
      {});
  compare.getGpuFunction()->calc(
      {Tensor(gpu_in.getData(), Dims{batch_size, input_dim}),
       Tensor(gpu_weight ? gpu_weight->getData() : nullptr,
              Dims{pad, input_dim}),
       Tensor(reinterpret_cast<real*>(gpu_seq->getData()),
              Dims{gpu_seq->getSize()})},
      {Tensor(gpu_out.getData(), Dims{batch_size, input_dim * context_length})},
      {});

  autotest::TensorCheckEqual(cpu_out, gpu_out);
}

79 80 81 82 83 84 85 86 87
void testMatrixProjectionBackward(int context_start,
                                  int context_length,
                                  bool is_padding,
                                  size_t batch_size,
                                  size_t input_dim) {
  size_t pad = std::max(0, -context_start) +
               std::max(0, (int)(context_start + context_length - 1));
  if (pad == 0) is_padding = false;

88 89 90 91 92 93 94
  FunctionCompare compare("ContextProjectionBackward",
                          FuncConfig()
                              .set("context_length", context_length)
                              .set("context_start", context_start)
                              .set("begin_pad", std::max(0, -context_start))
                              .set("is_padding", is_padding)
                              .set("total_pad", pad));
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

  CpuMatrix cpu_in_grad(batch_size, input_dim);
  cpu_in_grad.randomizeUniform();
  GpuMatrix gpu_in_grad(batch_size, input_dim);
  gpu_in_grad.copyFrom(cpu_in_grad);

  CpuMatrix cpu_out_grad(batch_size, input_dim * context_length);
  cpu_out_grad.randomizeUniform();
  GpuMatrix gpu_out_grad(batch_size, input_dim * context_length);
  gpu_out_grad.copyFrom(cpu_out_grad);

  IVectorPtr cpu_seq;
  generateSequenceStartPositions(batch_size, cpu_seq);
  IVectorPtr gpu_seq = IVector::create(cpu_seq->getSize(), true);
  gpu_seq->copyFrom(*cpu_seq);

  auto cpu_w_grad =
      is_padding ? std::make_shared<CpuMatrix>(pad, input_dim) : nullptr;
  auto gpu_w_grad =
      is_padding ? std::make_shared<GpuMatrix>(pad, input_dim) : nullptr;
  if (is_padding) {
    cpu_w_grad->randomizeUniform();
    gpu_w_grad->copyFrom(*cpu_w_grad);
  }

120 121 122 123 124 125 126 127 128
  compare.getCpuFunction()->calc(
      {Tensor(cpu_in_grad.getData(), Dims{batch_size, input_dim}),
       Tensor(cpu_w_grad ? cpu_w_grad->getData() : nullptr,
              Dims{pad, input_dim}),
       Tensor(reinterpret_cast<real*>(cpu_seq->getData()),
              Dims{cpu_seq->getSize()})},
      {Tensor(cpu_out_grad.getData(),
              Dims{batch_size, input_dim * context_length})},
      {});
129

130
  compare.getGpuFunction()->calc(
131
      {Tensor(gpu_in_grad.getData(), Dims{batch_size, input_dim}),
132 133
       Tensor(gpu_w_grad ? gpu_w_grad->getData() : nullptr,
              Dims{pad, input_dim}),
134 135 136 137 138 139 140 141 142 143 144 145 146
       Tensor(reinterpret_cast<real*>(gpu_seq->getData()),
              Dims{gpu_seq->getSize()})},
      {Tensor(gpu_out_grad.getData(),
              Dims{batch_size, input_dim * context_length})},
      {});

  autotest::TensorCheckErr(cpu_in_grad, gpu_in_grad);
  if (is_padding) {
    autotest::TensorCheckErr(*cpu_w_grad, *gpu_w_grad);
  }
}

TEST(ContextProjection, projection) {
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  for (auto context_start : {-5, -3, -1, 0, 3}) {
    for (auto context_length : {1, 2, 5, 7}) {
      for (auto trainable_padding : {false, true}) {
        for (auto batch_size : {1, 2, 5, 20, 100}) {
          for (auto input_dim : {15, 32, 63, 128, 200}) {
            VLOG(3) << " context_start=" << context_start
                    << " context_length=" << context_length
                    << " trainable_padding=" << trainable_padding
                    << " batch_size=" << batch_size
                    << " input_dim=" << input_dim;
            testMatrixProjectionForward(context_start,
                                        context_length,
                                        trainable_padding,
                                        batch_size,
                                        input_dim);
162 163 164 165 166
            testMatrixProjectionBackward(context_start,
                                         context_length,
                                         trainable_padding,
                                         batch_size,
                                         input_dim);
167 168 169 170 171 172
          }
        }
      }
    }
  }
}