“daf98c15451f70caae5626baa43d006348bc6410”上不存在“tools/git@gitcode.net:BaiXuePrincess/Paddle.git”
ContextProjectionOpTest.cpp 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include "FunctionTest.h"
#include "paddle/gserver/tests/TestUtil.h"
#include "paddle/math/Matrix.h"

using namespace paddle;  // NOLINT

void testMatrixProjectionForward(int context_start,
                                 size_t context_length,
                                 bool is_padding,
                                 size_t batch_size,
                                 size_t input_dim) {
  size_t pad = std::max(0, -context_start) +
               std::max(0, (int)(context_start + context_length - 1));
  if (pad == 0) is_padding = false;

  FunctionCompare compare("ContextProjectionForward",
                          FuncConfig()
                              .set("context_length", context_length)
                              .set("context_start", context_start)
                              .set("begin_pad", std::max(0, -context_start))
                              .set("is_padding", is_padding));

  CpuMatrix cpu_in(batch_size, input_dim);
  cpu_in.randomizeUniform();
  GpuMatrix gpu_in(batch_size, input_dim);
  gpu_in.copyFrom(cpu_in);
  auto cpu_weight =
      is_padding ? std::make_shared<CpuMatrix>(pad, input_dim) : nullptr;
  auto gpu_weight =
      is_padding ? std::make_shared<GpuMatrix>(pad, input_dim) : nullptr;
  if (is_padding) {
    cpu_weight->randomizeUniform();
    gpu_weight->copyFrom(*cpu_weight);
  }
  IVectorPtr cpu_seq;
  generateSequenceStartPositions(batch_size, cpu_seq);
  IVectorPtr gpu_seq = IVector::create(cpu_seq->getSize(), true);
  gpu_seq->copyFrom(*cpu_seq);

  CpuMatrix cpu_out(batch_size, input_dim * context_length);
  GpuMatrix gpu_out(batch_size, input_dim * context_length);
  cpu_out.randomizeUniform();
  gpu_out.copyFrom(cpu_out);

  compare.getCpuFunction()->calc(
      {Tensor(cpu_in.getData(), Dims{batch_size, input_dim}),
       Tensor(cpu_weight ? cpu_weight->getData() : nullptr,
              Dims{pad, input_dim}),
       Tensor(reinterpret_cast<real*>(cpu_seq->getData()),
              Dims{cpu_seq->getSize()})},
      {Tensor(cpu_out.getData(), Dims{batch_size, input_dim * context_length})},
      {});
  compare.getGpuFunction()->calc(
      {Tensor(gpu_in.getData(), Dims{batch_size, input_dim}),
       Tensor(gpu_weight ? gpu_weight->getData() : nullptr,
              Dims{pad, input_dim}),
       Tensor(reinterpret_cast<real*>(gpu_seq->getData()),
              Dims{gpu_seq->getSize()})},
      {Tensor(gpu_out.getData(), Dims{batch_size, input_dim * context_length})},
      {});

  autotest::TensorCheckEqual(cpu_out, gpu_out);
}

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
void testMatrixProjectionBackward(int context_start,
                                  int context_length,
                                  bool is_padding,
                                  size_t batch_size,
                                  size_t input_dim) {
  size_t pad = std::max(0, -context_start) +
               std::max(0, (int)(context_start + context_length - 1));
  if (pad == 0) is_padding = false;

  std::shared_ptr<FunctionBase> cpu_func(
      FunctionBase::funcRegistrar_.createByType(
          "ContextProjectionBackward-CPU"));
  FuncConfig cpu_config;
  cpu_config.set("context_length", context_length)
      .set("context_start", context_start)
      .set("begin_pad", std::max(0, -context_start))
      .set("is_padding", is_padding);
  cpu_func->init(cpu_config);

  std::shared_ptr<FunctionBase> gpu_data_func(
      FunctionBase::funcRegistrar_.createByType(
          "ContextProjectionBackwardData-GPU"));
  FuncConfig gpu_data_config;
  gpu_data_config.set("context_length", context_length)
      .set("context_start", context_start);
  gpu_data_func->init(gpu_data_config);

  std::shared_ptr<FunctionBase> gpu_w_func(
      FunctionBase::funcRegistrar_.createByType(
          "ContextProjectionBackwardWeight-GPU"));
  FuncConfig gpu_w_config;
  gpu_w_config.set("context_length", context_length)
      .set("context_start", context_start)
      .set("begin_pad", std::max(0, -context_start))
      .set("total_pad", pad);
  gpu_w_func->init(gpu_w_config);

  CpuMatrix cpu_in_grad(batch_size, input_dim);
  cpu_in_grad.randomizeUniform();
  GpuMatrix gpu_in_grad(batch_size, input_dim);
  gpu_in_grad.copyFrom(cpu_in_grad);

  CpuMatrix cpu_out_grad(batch_size, input_dim * context_length);
  cpu_out_grad.randomizeUniform();
  GpuMatrix gpu_out_grad(batch_size, input_dim * context_length);
  gpu_out_grad.copyFrom(cpu_out_grad);

  IVectorPtr cpu_seq;
  generateSequenceStartPositions(batch_size, cpu_seq);
  IVectorPtr gpu_seq = IVector::create(cpu_seq->getSize(), true);
  gpu_seq->copyFrom(*cpu_seq);

  auto cpu_w_grad =
      is_padding ? std::make_shared<CpuMatrix>(pad, input_dim) : nullptr;
  auto gpu_w_grad =
      is_padding ? std::make_shared<GpuMatrix>(pad, input_dim) : nullptr;
  if (is_padding) {
    cpu_w_grad->randomizeUniform();
    gpu_w_grad->copyFrom(*cpu_w_grad);
  }

  cpu_func->calc({Tensor(cpu_in_grad.getData(), Dims{batch_size, input_dim}),
                  Tensor(cpu_w_grad ? cpu_w_grad->getData() : nullptr,
                         Dims{pad, input_dim}),
                  Tensor(reinterpret_cast<real*>(cpu_seq->getData()),
                         Dims{cpu_seq->getSize()})},
                 {Tensor(cpu_out_grad.getData(),
                         Dims{batch_size, input_dim * context_length})},
                 {});

  gpu_data_func->calc(
      {Tensor(gpu_in_grad.getData(), Dims{batch_size, input_dim}),
       Tensor(reinterpret_cast<real*>(gpu_seq->getData()),
              Dims{gpu_seq->getSize()})},
      {Tensor(gpu_out_grad.getData(),
              Dims{batch_size, input_dim * context_length})},
      {});

  if (is_padding && gpu_w_grad) {
    gpu_w_func->calc({Tensor(gpu_w_grad->getData(), Dims{pad, input_dim}),
                      Tensor(reinterpret_cast<real*>(gpu_seq->getData()),
                             Dims{gpu_seq->getSize()})},
                     {Tensor(gpu_out_grad.getData(),
                             Dims{batch_size, input_dim * context_length})},
                     {});
  }

  autotest::TensorCheckErr(cpu_in_grad, gpu_in_grad);
  if (is_padding) {
    autotest::TensorCheckErr(*cpu_w_grad, *gpu_w_grad);
  }
}

TEST(ContextProjection, projection) {
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  for (auto context_start : {-5, -3, -1, 0, 3}) {
    for (auto context_length : {1, 2, 5, 7}) {
      for (auto trainable_padding : {false, true}) {
        for (auto batch_size : {1, 2, 5, 20, 100}) {
          for (auto input_dim : {15, 32, 63, 128, 200}) {
            VLOG(3) << " context_start=" << context_start
                    << " context_length=" << context_length
                    << " trainable_padding=" << trainable_padding
                    << " batch_size=" << batch_size
                    << " input_dim=" << input_dim;
            testMatrixProjectionForward(context_start,
                                        context_length,
                                        trainable_padding,
                                        batch_size,
                                        input_dim);
189 190 191 192 193
            testMatrixProjectionBackward(context_start,
                                         context_length,
                                         trainable_padding,
                                         batch_size,
                                         input_dim);
194 195 196 197 198 199
          }
        }
      }
    }
  }
}