resnet.py 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.framework import Variable
from paddle.fluid.regularizer import L2Decay
25
from paddle.fluid.initializer import Constant
26 27 28 29

from ppdet.core.workspace import register, serializable
from numbers import Integral

Y
Yang Zhang 已提交
30
from .nonlocal_helper import add_space_nonlocal
littletomatodonkey's avatar
littletomatodonkey 已提交
31
from .gc_block import add_gc_block
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
from .name_adapter import NameAdapter

__all__ = ['ResNet', 'ResNetC5']


@register
@serializable
class ResNet(object):
    """
    Residual Network, see https://arxiv.org/abs/1512.03385
    Args:
        depth (int): ResNet depth, should be 18, 34, 50, 101, 152.
        freeze_at (int): freeze the backbone at which stage
        norm_type (str): normalization type, 'bn'/'sync_bn'/'affine_channel'
        freeze_norm (bool): freeze normalization layers
        norm_decay (float): weight decay for normalization layer weights
        variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
        feature_maps (list): index of stages whose feature maps are returned
50
        dcn_v2_stages (list): index of stages who select deformable conv v2
51
        nonlocal_stages (list): index of stages who select nonlocal networks
littletomatodonkey's avatar
littletomatodonkey 已提交
52 53 54 55
        gcb_stages (list): index of stages who select gc blocks
        gcb_params (dict): gc blocks config, includes ratio(default as 1.0/16),
                           pooling_type(default as "att") and
                           fusion_types(default as ['channel_add'])
56 57 58
        lr_mult_list (list): learning rate ratio of different resnet stages(2,3,4,5),
                             lower learning rate ratio is need for pretrained model 
                             got using distillation(default as [1.0, 1.0, 1.0, 1.0]).
59
    """
60
    __shared__ = ['norm_type', 'freeze_norm', 'weight_prefix_name']
61 62 63 64 65 66 67 68

    def __init__(self,
                 depth=50,
                 freeze_at=2,
                 norm_type='affine_channel',
                 freeze_norm=True,
                 norm_decay=0.,
                 variant='b',
69
                 feature_maps=[2, 3, 4, 5],
70
                 dcn_v2_stages=[],
71
                 weight_prefix_name='',
littletomatodonkey's avatar
littletomatodonkey 已提交
72 73
                 nonlocal_stages=[],
                 gcb_stages=[],
74 75
                 gcb_params=dict(),
                 lr_mult_list=[1., 1., 1., 1.]):
76 77 78 79 80
        super(ResNet, self).__init__()

        if isinstance(feature_maps, Integral):
            feature_maps = [feature_maps]

81 82
        assert depth in [18, 34, 50, 101, 152, 200], \
            "depth {} not in [18, 34, 50, 101, 152, 200]"
83 84 85 86
        assert variant in ['a', 'b', 'c', 'd'], "invalid ResNet variant"
        assert 0 <= freeze_at <= 4, "freeze_at should be 0, 1, 2, 3 or 4"
        assert len(feature_maps) > 0, "need one or more feature maps"
        assert norm_type in ['bn', 'sync_bn', 'affine_channel']
87 88
        assert not (len(nonlocal_stages)>0 and depth<50), \
                    "non-local is not supported for resnet18 or resnet34"
89 90 91
        assert len(lr_mult_list
                   ) == 4, "lr_mult_list length must be 4 but got {}".format(
                       len(lr_mult_list))
92 93 94 95 96 97 98 99 100

        self.depth = depth
        self.freeze_at = freeze_at
        self.norm_type = norm_type
        self.norm_decay = norm_decay
        self.freeze_norm = freeze_norm
        self.variant = variant
        self._model_type = 'ResNet'
        self.feature_maps = feature_maps
101
        self.dcn_v2_stages = dcn_v2_stages
102 103 104 105 106
        self.depth_cfg = {
            18: ([2, 2, 2, 2], self.basicblock),
            34: ([3, 4, 6, 3], self.basicblock),
            50: ([3, 4, 6, 3], self.bottleneck),
            101: ([3, 4, 23, 3], self.bottleneck),
107 108
            152: ([3, 8, 36, 3], self.bottleneck),
            200: ([3, 12, 48, 3], self.bottleneck),
109 110 111 112
        }
        self.stage_filters = [64, 128, 256, 512]
        self._c1_out_chan_num = 64
        self.na = NameAdapter(self)
113
        self.prefix_name = weight_prefix_name
littletomatodonkey's avatar
littletomatodonkey 已提交
114

115 116
        self.nonlocal_stages = nonlocal_stages
        self.nonlocal_mod_cfg = {
littletomatodonkey's avatar
littletomatodonkey 已提交
117 118 119 120
            50: 2,
            101: 5,
            152: 8,
            200: 12,
121
        }
122

littletomatodonkey's avatar
littletomatodonkey 已提交
123 124 125
        self.gcb_stages = gcb_stages
        self.gcb_params = gcb_params

126 127 128 129
        self.lr_mult_list = lr_mult_list
        # var denoting curr stage
        self.stage_num = -1

130 131 132 133 134 135 136
    def _conv_offset(self,
                     input,
                     filter_size,
                     stride,
                     padding,
                     act=None,
                     name=None):
137
        out_channel = filter_size * filter_size * 3
138 139
        out = fluid.layers.conv2d(
            input,
140 141 142 143
            num_filters=out_channel,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
144 145 146 147
            param_attr=ParamAttr(
                initializer=Constant(0.0), name=name + ".w_0"),
            bias_attr=ParamAttr(
                initializer=Constant(0.0), name=name + ".b_0"),
148 149 150 151
            act=act,
            name=name)
        return out

152 153 154 155 156 157 158
    def _conv_norm(self,
                   input,
                   num_filters,
                   filter_size,
                   stride=1,
                   groups=1,
                   act=None,
159 160
                   name=None,
                   dcn_v2=False):
161
        _name = self.prefix_name + name if self.prefix_name != '' else name
162 163 164 165 166 167 168

        # need fine lr for distilled model, default as 1.0
        lr_mult = 1.0
        mult_idx = max(self.stage_num - 2, 0)
        mult_idx = min(self.stage_num - 2, 3)
        lr_mult = self.lr_mult_list[mult_idx]

169 170 171 172 173 174 175 176 177
        if not dcn_v2:
            conv = fluid.layers.conv2d(
                input=input,
                num_filters=num_filters,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=groups,
                act=None,
178 179
                param_attr=ParamAttr(
                    name=_name + "_weights", learning_rate=lr_mult),
180
                bias_attr=False,
181
                name=_name + '.conv2d.output.1')
182 183 184 185 186 187 188 189
        else:
            # select deformable conv"
            offset_mask = self._conv_offset(
                input=input,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                act=None,
190
                name=_name + "_conv_offset")
191 192
            offset_channel = filter_size**2 * 2
            mask_channel = filter_size**2
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
            offset, mask = fluid.layers.split(
                input=offset_mask,
                num_or_sections=[offset_channel, mask_channel],
                dim=1)
            mask = fluid.layers.sigmoid(mask)
            conv = fluid.layers.deformable_conv(
                input=input,
                offset=offset,
                mask=mask,
                num_filters=num_filters,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=groups,
                deformable_groups=1,
                im2col_step=1,
209 210
                param_attr=ParamAttr(
                    name=_name + "_weights", learning_rate=lr_mult),
211
                bias_attr=False,
212
                name=_name + ".conv2d.output.1")
213 214

        bn_name = self.na.fix_conv_norm_name(name)
215
        bn_name = self.prefix_name + bn_name if self.prefix_name != '' else bn_name
216

217
        norm_lr = 0. if self.freeze_norm else lr_mult
218 219 220 221 222 223 224 225 226 227 228
        norm_decay = self.norm_decay
        pattr = ParamAttr(
            name=bn_name + '_scale',
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))
        battr = ParamAttr(
            name=bn_name + '_offset',
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))

        if self.norm_type in ['bn', 'sync_bn']:
229
            global_stats = True if self.freeze_norm else False
230 231 232 233 234 235 236
            out = fluid.layers.batch_norm(
                input=conv,
                act=act,
                name=bn_name + '.output.1',
                param_attr=pattr,
                bias_attr=battr,
                moving_mean_name=bn_name + '_mean',
237 238
                moving_variance_name=bn_name + '_variance',
                use_global_stats=global_stats)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
            scale = fluid.framework._get_var(pattr.name)
            bias = fluid.framework._get_var(battr.name)
        elif self.norm_type == 'affine_channel':
            scale = fluid.layers.create_parameter(
                shape=[conv.shape[1]],
                dtype=conv.dtype,
                attr=pattr,
                default_initializer=fluid.initializer.Constant(1.))
            bias = fluid.layers.create_parameter(
                shape=[conv.shape[1]],
                dtype=conv.dtype,
                attr=battr,
                default_initializer=fluid.initializer.Constant(0.))
            out = fluid.layers.affine_channel(
                x=conv, scale=scale, bias=bias, act=act)
        if self.freeze_norm:
            scale.stop_gradient = True
            bias.stop_gradient = True
        return out

    def _shortcut(self, input, ch_out, stride, is_first, name):
        max_pooling_in_short_cut = self.variant == 'd'
        ch_in = input.shape[1]
        # the naming rule is same as pretrained weight
        name = self.na.fix_shortcut_name(name)
264
        std_senet = getattr(self, 'std_senet', False)
265
        if ch_in != ch_out or stride != 1 or (self.depth < 50 and is_first):
266 267 268 269 270
            if std_senet:
                if is_first:
                    return self._conv_norm(input, ch_out, 1, stride, name=name)
                else:
                    return self._conv_norm(input, ch_out, 3, stride, name=name)
271 272 273 274 275 276 277 278 279 280 281 282 283
            if max_pooling_in_short_cut and not is_first:
                input = fluid.layers.pool2d(
                    input=input,
                    pool_size=2,
                    pool_stride=2,
                    pool_padding=0,
                    ceil_mode=True,
                    pool_type='avg')
                return self._conv_norm(input, ch_out, 1, 1, name=name)
            return self._conv_norm(input, ch_out, 1, stride, name=name)
        else:
            return input

284 285 286 287 288 289
    def bottleneck(self,
                   input,
                   num_filters,
                   stride,
                   is_first,
                   name,
littletomatodonkey's avatar
littletomatodonkey 已提交
290 291 292
                   dcn_v2=False,
                   gcb=False,
                   gcb_name=None):
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        if self.variant == 'a':
            stride1, stride2 = stride, 1
        else:
            stride1, stride2 = 1, stride

        # ResNeXt
        groups = getattr(self, 'groups', 1)
        group_width = getattr(self, 'group_width', -1)
        if groups == 1:
            expand = 4
        elif (groups * group_width) == 256:
            expand = 1
        else:  # FIXME hard code for now, handles 32x4d, 64x4d and 32x8d
            num_filters = num_filters // 2
            expand = 2

        conv_name1, conv_name2, conv_name3, \
            shortcut_name = self.na.fix_bottleneck_name(name)
311 312 313 314 315 316 317 318 319 320 321
        std_senet = getattr(self, 'std_senet', False)
        if std_senet:
            conv_def = [
                [int(num_filters / 2), 1, stride1, 'relu', 1, conv_name1],
                [num_filters, 3, stride2, 'relu', groups, conv_name2],
                [num_filters * expand, 1, 1, None, 1, conv_name3]
            ]
        else:
            conv_def = [[num_filters, 1, stride1, 'relu', 1, conv_name1],
                        [num_filters, 3, stride2, 'relu', groups, conv_name2],
                        [num_filters * expand, 1, 1, None, 1, conv_name3]]
322 323

        residual = input
324
        for i, (c, k, s, act, g, _name) in enumerate(conv_def):
325 326 327 328 329 330 331
            residual = self._conv_norm(
                input=residual,
                num_filters=c,
                filter_size=k,
                stride=s,
                act=act,
                groups=g,
332
                name=_name,
333
                dcn_v2=(i == 1 and dcn_v2))
334 335 336 337 338 339 340 341 342 343
        short = self._shortcut(
            input,
            num_filters * expand,
            stride,
            is_first=is_first,
            name=shortcut_name)
        # Squeeze-and-Excitation
        if callable(getattr(self, '_squeeze_excitation', None)):
            residual = self._squeeze_excitation(
                input=residual, num_channels=num_filters, name='fc' + name)
littletomatodonkey's avatar
littletomatodonkey 已提交
344 345
        if gcb:
            residual = add_gc_block(residual, name=gcb_name, **self.gcb_params)
346 347 348
        return fluid.layers.elementwise_add(
            x=short, y=residual, act='relu', name=name + ".add.output.5")

349 350 351 352 353 354
    def basicblock(self,
                   input,
                   num_filters,
                   stride,
                   is_first,
                   name,
littletomatodonkey's avatar
littletomatodonkey 已提交
355 356 357
                   dcn_v2=False,
                   gcb=False,
                   gcb_name=None):
358
        assert dcn_v2 is False, "Not implemented yet."
littletomatodonkey's avatar
littletomatodonkey 已提交
359
        assert gcb is False, "Not implemented yet."
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
        conv0 = self._conv_norm(
            input=input,
            num_filters=num_filters,
            filter_size=3,
            act='relu',
            stride=stride,
            name=name + "_branch2a")
        conv1 = self._conv_norm(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")
        short = self._shortcut(
            input, num_filters, stride, is_first, name=name + "_branch1")
        return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')

    def layer_warp(self, input, stage_num):
        """
        Args:
            input (Variable): input variable.
            stage_num (int): the stage number, should be 2, 3, 4, 5

        Returns:
            The last variable in endpoint-th stage.
        """
        assert stage_num in [2, 3, 4, 5]

388 389
        self.stage_num = stage_num

390 391 392 393 394
        stages, block_func = self.depth_cfg[self.depth]
        count = stages[stage_num - 2]

        ch_out = self.stage_filters[stage_num - 2]
        is_first = False if stage_num != 2 else True
395
        dcn_v2 = True if stage_num in self.dcn_v2_stages else False
littletomatodonkey's avatar
littletomatodonkey 已提交
396

397 398
        nonlocal_mod = 1000
        if stage_num in self.nonlocal_stages:
littletomatodonkey's avatar
littletomatodonkey 已提交
399 400 401
            nonlocal_mod = self.nonlocal_mod_cfg[
                self.depth] if stage_num == 4 else 2

402 403 404 405 406 407 408
        # Make the layer name and parameter name consistent
        # with ImageNet pre-trained model
        conv = input
        for i in range(count):
            conv_name = self.na.fix_layer_warp_name(stage_num, count, i)
            if self.depth < 50:
                is_first = True if i == 0 and stage_num == 2 else False
littletomatodonkey's avatar
littletomatodonkey 已提交
409 410 411

            gcb = stage_num in self.gcb_stages
            gcb_name = "gcb_res{}_b{}".format(stage_num, i)
412 413 414 415 416
            conv = block_func(
                input=conv,
                num_filters=ch_out,
                stride=2 if i == 0 and stage_num != 2 else 1,
                is_first=is_first,
417
                name=conv_name,
littletomatodonkey's avatar
littletomatodonkey 已提交
418 419 420 421
                dcn_v2=dcn_v2,
                gcb=gcb,
                gcb_name=gcb_name)

422 423
            # add non local model
            dim_in = conv.shape[1]
littletomatodonkey's avatar
littletomatodonkey 已提交
424
            nonlocal_name = "nonlocal_conv{}".format(stage_num)
425
            if i % nonlocal_mod == nonlocal_mod - 1:
littletomatodonkey's avatar
littletomatodonkey 已提交
426 427 428
                conv = add_space_nonlocal(conv, dim_in, dim_in,
                                          nonlocal_name + '_{}'.format(i),
                                          int(dim_in / 2))
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
        return conv

    def c1_stage(self, input):
        out_chan = self._c1_out_chan_num

        conv1_name = self.na.fix_c1_stage_name()

        if self.variant in ['c', 'd']:
            conv_def = [
                [out_chan // 2, 3, 2, "conv1_1"],
                [out_chan // 2, 3, 1, "conv1_2"],
                [out_chan, 3, 1, "conv1_3"],
            ]
        else:
            conv_def = [[out_chan, 7, 2, conv1_name]]

        for (c, k, s, _name) in conv_def:
            input = self._conv_norm(
                input=input,
                num_filters=c,
                filter_size=k,
                stride=s,
                act='relu',
                name=_name)

        output = fluid.layers.pool2d(
            input=input,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')
        return output

    def __call__(self, input):
        assert isinstance(input, Variable)
        assert not (set(self.feature_maps) - set([2, 3, 4, 5])), \
            "feature maps {} not in [2, 3, 4, 5]".format(self.feature_maps)

        res_endpoints = []

        res = input
        feature_maps = self.feature_maps
        severed_head = getattr(self, 'severed_head', False)
        if not severed_head:
            res = self.c1_stage(res)
            feature_maps = range(2, max(self.feature_maps) + 1)

        for i in feature_maps:
            res = self.layer_warp(res, i)
            if i in self.feature_maps:
                res_endpoints.append(res)
            if self.freeze_at >= i:
                res.stop_gradient = True

        return OrderedDict([('res{}_sum'.format(self.feature_maps[idx]), feat)
                            for idx, feat in enumerate(res_endpoints)])


@register
@serializable
class ResNetC5(ResNet):
    __doc__ = ResNet.__doc__

    def __init__(self,
                 depth=50,
                 freeze_at=2,
                 norm_type='affine_channel',
                 freeze_norm=True,
                 norm_decay=0.,
                 variant='b',
499 500
                 feature_maps=[5],
                 weight_prefix_name=''):
501 502
        super(ResNetC5, self).__init__(depth, freeze_at, norm_type, freeze_norm,
                                       norm_decay, variant, feature_maps)
503
        self.severed_head = True