未验证 提交 aaf77a05 编写于 作者: littletomatodonkey's avatar littletomatodonkey 提交者: GitHub

add gcnet model (#166)

* add gcnet model : https://arxiv.org/abs/1904.11492
上级 c925d0f6
# GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
## Introduction
- GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
: [https://arxiv.org/abs/1904.11492](https://arxiv.org/abs/1904.11492)
```
@article{DBLP:journals/corr/abs-1904-11492,
author = {Yue Cao and
Jiarui Xu and
Stephen Lin and
Fangyun Wei and
Han Hu},
title = {GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond},
journal = {CoRR},
volume = {abs/1904.11492},
year = {2019},
url = {http://arxiv.org/abs/1904.11492},
archivePrefix = {arXiv},
eprint = {1904.11492},
timestamp = {Tue, 09 Jul 2019 16:48:55 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1904-11492},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
## Model Zoo
| Backbone | Type | Context| Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download |
| :---------------------- | :-------------: | :-------------: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-vd-FPN | Mask | GC(c3-c5, r16, add) | 2 | 2x | 15.31 | 41.4 | 36.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_gcb_add_r16_2x.tar) |
| ResNet50-vd-FPN | Mask | GC(c3-c5, r16, mul) | 2 | 2x | 15.35 | 40.7 | 36.1 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_gcb_mul_r16_2x.tar) |
architecture: MaskRCNN
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
metric: COCO
weights: output/mask_rcnn_r50_vd_fpn_gcb_add_r16_2x/model_final/
num_classes: 81
MaskRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 50
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: bn
variant: d
gcb_stages: [3, 4, 5]
gcb_params:
ratio: 0.0625
pooling_type: att
fusion_types: [channel_add]
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
box_resolution: 7
sampling_ratio: 2
mask_resolution: 14
MaskHead:
dilation: 1
conv_dim: 256
num_convs: 4
resolution: 28
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
MaskAssigner:
resolution: 28
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
_READER_: '../mask_fpn_reader.yml'
TrainReader:
batch_size: 2
architecture: MaskRCNN
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
metric: COCO
weights: output/mask_rcnn_r50_vd_fpn_gcb_mul_r16_2x/model_final/
num_classes: 81
MaskRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 50
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: bn
variant: d
gcb_stages: [3, 4, 5]
gcb_params:
ratio: 0.0625
pooling_type: att
fusion_types: [channel_mul]
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
box_resolution: 7
sampling_ratio: 2
mask_resolution: 14
MaskHead:
dilation: 1
conv_dim: 256
num_convs: 4
resolution: 28
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
MaskAssigner:
resolution: 28
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
_READER_: '../mask_fpn_reader.yml'
TrainReader:
batch_size: 2
......@@ -102,6 +102,9 @@ The backbone models pretrained on ImageNet are available. All backbone models ar
### IOU loss
* GIOU loss and DIOU loss are included now. See more details in [IOU loss model zoo](../configs/iou_loss/README.md).
### GCNet
* See more details in [GCNet model zoo](../configs/gcnet/README.md).
### Group Normalization
| Backbone | Type | Image/gpu | Lr schd | Box AP | Mask AP | Download |
......
......@@ -99,6 +99,9 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
### IOU loss
* 目前模型库中包括GIOU loss和DIOU loss,详情加[IOU loss模型库](../configs/iou_loss/README.md).
### GCNet
* 详情见[GCNet模型库](../configs/gcnet/README.md).
### Group Normalization
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 | Box AP | Mask AP | 下载 |
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import paddle
import paddle.fluid as fluid
from paddle.fluid import ParamAttr
from paddle.fluid.initializer import ConstantInitializer
def spatial_pool(x, pooling_type, name):
_, channel, height, width = x.shape
if pooling_type == 'att':
input_x = x
# [N, 1, C, H * W]
input_x = fluid.layers.reshape(input_x, shape=(0, 1, channel, -1))
context_mask = fluid.layers.conv2d(
input=x,
num_filters=1,
filter_size=1,
stride=1,
padding=0,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=ParamAttr(name=name + "_bias"))
# [N, 1, H * W]
context_mask = fluid.layers.reshape(context_mask, shape=(0, 0, -1))
# [N, 1, H * W]
context_mask = fluid.layers.softmax(context_mask, axis=2)
# [N, 1, H * W, 1]
context_mask = fluid.layers.reshape(context_mask, shape=(0, 0, -1, 1))
# [N, 1, C, 1]
context = fluid.layers.matmul(input_x, context_mask)
# [N, C, 1, 1]
context = fluid.layers.reshape(context, shape=(0, channel, 1, 1))
else:
# [N, C, 1, 1]
context = fluid.layers.pool2d(
input=x, pool_type='avg', global_pooling=True)
return context
def channel_conv(input, inner_ch, out_ch, name):
conv = fluid.layers.conv2d(
input=input,
num_filters=inner_ch,
filter_size=1,
stride=1,
padding=0,
param_attr=ParamAttr(name=name + "_conv1_weights"),
bias_attr=ParamAttr(name=name + "_conv1_bias"),
name=name + "_conv1", )
conv = fluid.layers.layer_norm(
conv,
begin_norm_axis=1,
param_attr=ParamAttr(name=name + "_ln_weights"),
bias_attr=ParamAttr(name=name + "_ln_bias"),
act="relu",
name=name + "_ln")
conv = fluid.layers.conv2d(
input=conv,
num_filters=out_ch,
filter_size=1,
stride=1,
padding=0,
param_attr=ParamAttr(
name=name + "_conv2_weights",
initializer=ConstantInitializer(value=0.0), ),
bias_attr=ParamAttr(
name=name + "_conv2_bias",
initializer=ConstantInitializer(value=0.0), ),
name=name + "_conv2")
return conv
def add_gc_block(x,
ratio=1.0 / 16,
pooling_type='att',
fusion_types=['channel_add'],
name=None):
'''
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond, see https://arxiv.org/abs/1904.11492
Args:
ratio (float): channel reduction ratio
pooling_type (str): pooling type, support att and avg
fusion_types (list): fusion types, support channel_add and channel_mul
name (str): prefix name of gc block
'''
assert pooling_type in ['avg', 'att']
assert isinstance(fusion_types, (list, tuple))
valid_fusion_types = ['channel_add', 'channel_mul']
assert all([f in valid_fusion_types for f in fusion_types])
assert len(fusion_types) > 0, 'at least one fusion should be used'
inner_ch = int(ratio * x.shape[1])
out_ch = x.shape[1]
context = spatial_pool(x, pooling_type, name + "_spatial_pool")
out = x
if 'channel_mul' in fusion_types:
inner_out = channel_conv(context, inner_ch, out_ch, name + "_mul")
channel_mul_term = fluid.layers.sigmoid(inner_out)
out = out * channel_mul_term
if 'channel_add' in fusion_types:
channel_add_term = channel_conv(context, inner_ch, out_ch,
name + "_add")
out = out + channel_add_term
return out
......@@ -28,6 +28,7 @@ from ppdet.core.workspace import register, serializable
from numbers import Integral
from .nonlocal_helper import add_space_nonlocal
from .gc_block import add_gc_block
from .name_adapter import NameAdapter
__all__ = ['ResNet', 'ResNetC5']
......@@ -48,6 +49,10 @@ class ResNet(object):
feature_maps (list): index of stages whose feature maps are returned
dcn_v2_stages (list): index of stages who select deformable conv v2
nonlocal_stages (list): index of stages who select nonlocal networks
gcb_stages (list): index of stages who select gc blocks
gcb_params (dict): gc blocks config, includes ratio(default as 1.0/16),
pooling_type(default as "att") and
fusion_types(default as ['channel_add'])
"""
__shared__ = ['norm_type', 'freeze_norm', 'weight_prefix_name']
......@@ -61,7 +66,9 @@ class ResNet(object):
feature_maps=[2, 3, 4, 5],
dcn_v2_stages=[],
weight_prefix_name='',
nonlocal_stages=[]):
nonlocal_stages=[],
gcb_stages=[],
gcb_params=dict()):
super(ResNet, self).__init__()
if isinstance(feature_maps, Integral):
......@@ -97,15 +104,18 @@ class ResNet(object):
self._c1_out_chan_num = 64
self.na = NameAdapter(self)
self.prefix_name = weight_prefix_name
self.nonlocal_stages = nonlocal_stages
self.nonlocal_mod_cfg = {
50 : 2,
101 : 5,
152 : 8,
200 : 12,
50: 2,
101: 5,
152: 8,
200: 12,
}
self.gcb_stages = gcb_stages
self.gcb_params = gcb_params
def _conv_offset(self,
input,
filter_size,
......@@ -257,7 +267,9 @@ class ResNet(object):
stride,
is_first,
name,
dcn_v2=False):
dcn_v2=False,
gcb=False,
gcb_name=None):
if self.variant == 'a':
stride1, stride2 = stride, 1
else:
......@@ -309,6 +321,8 @@ class ResNet(object):
if callable(getattr(self, '_squeeze_excitation', None)):
residual = self._squeeze_excitation(
input=residual, num_channels=num_filters, name='fc' + name)
if gcb:
residual = add_gc_block(residual, name=gcb_name, **self.gcb_params)
return fluid.layers.elementwise_add(
x=short, y=residual, act='relu', name=name + ".add.output.5")
......@@ -318,8 +332,11 @@ class ResNet(object):
stride,
is_first,
name,
dcn_v2=False):
dcn_v2=False,
gcb=False,
gcb_name=None):
assert dcn_v2 is False, "Not implemented yet."
assert gcb is False, "Not implemented yet."
conv0 = self._conv_norm(
input=input,
num_filters=num_filters,
......@@ -354,11 +371,12 @@ class ResNet(object):
ch_out = self.stage_filters[stage_num - 2]
is_first = False if stage_num != 2 else True
dcn_v2 = True if stage_num in self.dcn_v2_stages else False
nonlocal_mod = 1000
if stage_num in self.nonlocal_stages:
nonlocal_mod = self.nonlocal_mod_cfg[self.depth] if stage_num==4 else 2
nonlocal_mod = self.nonlocal_mod_cfg[
self.depth] if stage_num == 4 else 2
# Make the layer name and parameter name consistent
# with ImageNet pre-trained model
conv = input
......@@ -366,21 +384,26 @@ class ResNet(object):
conv_name = self.na.fix_layer_warp_name(stage_num, count, i)
if self.depth < 50:
is_first = True if i == 0 and stage_num == 2 else False
gcb = stage_num in self.gcb_stages
gcb_name = "gcb_res{}_b{}".format(stage_num, i)
conv = block_func(
input=conv,
num_filters=ch_out,
stride=2 if i == 0 and stage_num != 2 else 1,
is_first=is_first,
name=conv_name,
dcn_v2=dcn_v2)
dcn_v2=dcn_v2,
gcb=gcb,
gcb_name=gcb_name)
# add non local model
dim_in = conv.shape[1]
nonlocal_name = "nonlocal_conv{}".format( stage_num )
nonlocal_name = "nonlocal_conv{}".format(stage_num)
if i % nonlocal_mod == nonlocal_mod - 1:
conv = add_space_nonlocal(
conv, dim_in, dim_in,
nonlocal_name + '_{}'.format(i), int(dim_in / 2) )
conv = add_space_nonlocal(conv, dim_in, dim_in,
nonlocal_name + '_{}'.format(i),
int(dim_in / 2))
return conv
def c1_stage(self, input):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册