mobilenet_v3.py 19.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

G
Guanghua Yu 已提交
21 22 23 24
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

25 26 27 28
import math
import numpy as np
from collections import OrderedDict

G
Guanghua Yu 已提交
29
from ppdet.core.workspace import register
30
from numbers import Integral
G
Guanghua Yu 已提交
31

32
__all__ = ['MobileNetV3', 'MobileNetV3RCNN']
G
Guanghua Yu 已提交
33 34 35


@register
36
class MobileNetV3(object):
37 38 39 40 41 42 43 44
    """
    MobileNet v3, see https://arxiv.org/abs/1905.02244
    Args:
	scale (float): scaling factor for convolution groups proportion of mobilenet_v3.
        model_name (str): There are two modes, small and large.
        norm_type (str): normalization type, 'bn' and 'sync_bn' are supported.
        norm_decay (float): weight decay for normalization layer weights.
        conv_decay (float): weight decay for convolution layer weights.
45
        feature_maps (list): index of stages whose feature maps are returned.
46
        extra_block_filters (list): number of filter for each extra block.
47
        lr_mult_list (list): learning rate ratio of different blocks, lower learning rate ratio
48
                             is need for pretrained model got using distillation(default as
49
                             [1.0, 1.0, 1.0, 1.0, 1.0]).
50 51 52
        freeze_norm (bool): freeze normalization layers.
        multiplier (float): The multiplier by which to reduce the convolution expansion and
                            number of channels.
53 54 55
    """
    __shared__ = ['norm_type']

56 57 58 59 60 61 62 63 64 65
    def __init__(
            self,
            scale=1.0,
            model_name='small',
            feature_maps=[5, 6, 7, 8, 9, 10],
            conv_decay=0.0,
            norm_type='bn',
            norm_decay=0.0,
            extra_block_filters=[[256, 512], [128, 256], [128, 256], [64, 128]],
            lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
66 67
            freeze_norm=False,
            multiplier=1.0):
68 69 70
        if isinstance(feature_maps, Integral):
            feature_maps = [feature_maps]

G
Guanghua Yu 已提交
71 72
        self.scale = scale
        self.model_name = model_name
73
        self.feature_maps = feature_maps
G
Guanghua Yu 已提交
74 75
        self.extra_block_filters = extra_block_filters
        self.conv_decay = conv_decay
K
Kaipeng Deng 已提交
76
        self.norm_decay = norm_decay
G
Guanghua Yu 已提交
77 78
        self.inplanes = 16
        self.end_points = []
79
        self.block_stride = 0
80 81 82 83 84 85

        self.lr_mult_list = lr_mult_list
        self.freeze_norm = freeze_norm
        self.norm_type = norm_type
        self.curr_stage = 0

G
Guanghua Yu 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        if model_name == "large":
            self.cfg = [
                # kernel_size, expand, channel, se_block, act_mode, stride
                [3, 16, 16, False, 'relu', 1],
                [3, 64, 24, False, 'relu', 2],
                [3, 72, 24, False, 'relu', 1],
                [5, 72, 40, True, 'relu', 2],
                [5, 120, 40, True, 'relu', 1],
                [5, 120, 40, True, 'relu', 1],
                [3, 240, 80, False, 'hard_swish', 2],
                [3, 200, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 480, 112, True, 'hard_swish', 1],
                [3, 672, 112, True, 'hard_swish', 1],
                [5, 672, 160, True, 'hard_swish', 2],
                [5, 960, 160, True, 'hard_swish', 1],
                [5, 960, 160, True, 'hard_swish', 1],
            ]
105 106
            self.cls_ch_squeeze = 960
            self.cls_ch_expand = 1280
G
Guanghua Yu 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        elif model_name == "small":
            self.cfg = [
                # kernel_size, expand, channel, se_block, act_mode, stride
                [3, 16, 16, True, 'relu', 2],
                [3, 72, 24, False, 'relu', 2],
                [3, 88, 24, False, 'relu', 1],
                [5, 96, 40, True, 'hard_swish', 2],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 120, 48, True, 'hard_swish', 1],
                [5, 144, 48, True, 'hard_swish', 1],
                [5, 288, 96, True, 'hard_swish', 2],
                [5, 576, 96, True, 'hard_swish', 1],
                [5, 576, 96, True, 'hard_swish', 1],
            ]
122 123
            self.cls_ch_squeeze = 576
            self.cls_ch_expand = 1280
G
Guanghua Yu 已提交
124 125 126
        else:
            raise NotImplementedError

127 128 129 130 131 132 133
        if multiplier != 1.0:
            self.cfg[-3][2] = int(self.cfg[-3][2] * multiplier)
            self.cfg[-2][1] = int(self.cfg[-2][1] * multiplier)
            self.cfg[-2][2] = int(self.cfg[-2][2] * multiplier)
            self.cfg[-1][1] = int(self.cfg[-1][1] * multiplier)
            self.cfg[-1][2] = int(self.cfg[-1][2] * multiplier)

G
Guanghua Yu 已提交
134 135 136 137 138 139 140 141 142 143 144
    def _conv_bn_layer(self,
                       input,
                       filter_size,
                       num_filters,
                       stride,
                       padding,
                       num_groups=1,
                       if_act=True,
                       act=None,
                       name=None,
                       use_cudnn=True):
145 146 147
        lr_idx = self.curr_stage // 3
        lr_idx = min(lr_idx, len(self.lr_mult_list) - 1)
        lr_mult = self.lr_mult_list[lr_idx]
G
Guanghua Yu 已提交
148 149 150 151 152 153 154 155 156
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
157 158 159 160
            param_attr=ParamAttr(
                name=name + '_weights',
                learning_rate=lr_mult,
                regularizer=L2Decay(self.conv_decay)),
G
Guanghua Yu 已提交
161 162
            bias_attr=False)
        bn_name = name + '_bn'
163 164
        bn = self._bn(conv, bn_name=bn_name)

G
Guanghua Yu 已提交
165 166 167 168 169 170 171 172 173
        if if_act:
            if act == 'relu':
                bn = fluid.layers.relu(bn)
            elif act == 'hard_swish':
                bn = self._hard_swish(bn)
            elif act == 'relu6':
                bn = fluid.layers.relu6(bn)
        return bn

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    def _bn(self, input, act=None, bn_name=None):
        lr_idx = self.curr_stage // 3
        lr_idx = min(lr_idx, len(self.lr_mult_list) - 1)
        lr_mult = self.lr_mult_list[lr_idx]
        norm_lr = 0. if self.freeze_norm else lr_mult
        norm_decay = self.norm_decay
        pattr = ParamAttr(
            name=bn_name + '_scale',
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))
        battr = ParamAttr(
            name=bn_name + '_offset',
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))

        conv = input

        if self.norm_type in ['bn', 'sync_bn']:
            global_stats = True if self.freeze_norm else False
            out = fluid.layers.batch_norm(
                input=conv,
                act=act,
                name=bn_name + '.output.1',
                param_attr=pattr,
                bias_attr=battr,
                moving_mean_name=bn_name + '_mean',
                moving_variance_name=bn_name + '_variance',
                use_global_stats=global_stats)
            scale = fluid.framework._get_var(pattr.name)
            bias = fluid.framework._get_var(battr.name)
        elif self.norm_type == 'affine_channel':
            scale = fluid.layers.create_parameter(
                shape=[conv.shape[1]],
                dtype=conv.dtype,
                attr=pattr,
                default_initializer=fluid.initializer.Constant(1.))
            bias = fluid.layers.create_parameter(
                shape=[conv.shape[1]],
                dtype=conv.dtype,
                attr=battr,
                default_initializer=fluid.initializer.Constant(0.))
            out = fluid.layers.affine_channel(
                x=conv, scale=scale, bias=bias, act=act)

        if self.freeze_norm:
            scale.stop_gradient = True
            bias.stop_gradient = True

        return out

G
Guanghua Yu 已提交
224 225 226 227
    def _hard_swish(self, x):
        return x * fluid.layers.relu6(x + 3) / 6.

    def _se_block(self, input, num_out_filter, ratio=4, name=None):
228 229 230 231
        lr_idx = self.curr_stage // 3
        lr_idx = min(lr_idx, len(self.lr_mult_list) - 1)
        lr_mult = self.lr_mult_list[lr_idx]

G
Guanghua Yu 已提交
232 233 234 235 236 237 238 239
        num_mid_filter = int(num_out_filter // ratio)
        pool = fluid.layers.pool2d(
            input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
        conv1 = fluid.layers.conv2d(
            input=pool,
            filter_size=1,
            num_filters=num_mid_filter,
            act='relu',
240 241 242 243 244 245 246 247
            param_attr=ParamAttr(
                name=name + '_1_weights',
                learning_rate=lr_mult,
                regularizer=L2Decay(self.conv_decay)),
            bias_attr=ParamAttr(
                name=name + '_1_offset',
                learning_rate=lr_mult,
                regularizer=L2Decay(self.conv_decay)))
G
Guanghua Yu 已提交
248 249 250 251 252
        conv2 = fluid.layers.conv2d(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            act='hard_sigmoid',
253 254 255 256 257 258 259 260
            param_attr=ParamAttr(
                name=name + '_2_weights',
                learning_rate=lr_mult,
                regularizer=L2Decay(self.conv_decay)),
            bias_attr=ParamAttr(
                name=name + '_2_offset',
                learning_rate=lr_mult,
                regularizer=L2Decay(self.conv_decay)))
G
Guanghua Yu 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

        scale = fluid.layers.elementwise_mul(x=input, y=conv2, axis=0)
        return scale

    def _residual_unit(self,
                       input,
                       num_in_filter,
                       num_mid_filter,
                       num_out_filter,
                       stride,
                       filter_size,
                       act=None,
                       use_se=False,
                       name=None):
        input_data = input
        conv0 = self._conv_bn_layer(
            input=input,
            filter_size=1,
            num_filters=num_mid_filter,
            stride=1,
            padding=0,
            if_act=True,
            act=act,
            name=name + '_expand')
285

286 287 288 289 290
        if self.block_stride == 4 and stride == 2:
            self.block_stride += 1
            if self.block_stride in self.feature_maps:
                self.end_points.append(conv0)

291 292 293 294 295 296 297 298 299 300 301 302
        with fluid.name_scope('res_conv1'):
            conv1 = self._conv_bn_layer(
                input=conv0,
                filter_size=filter_size,
                num_filters=num_mid_filter,
                stride=stride,
                padding=int((filter_size - 1) // 2),
                if_act=True,
                act=act,
                num_groups=num_mid_filter,
                use_cudnn=False,
                name=name + '_depthwise')
G
Guanghua Yu 已提交
303 304

        if use_se:
305 306 307 308 309
            with fluid.name_scope('se_block'):
                conv1 = self._se_block(
                    input=conv1,
                    num_out_filter=num_mid_filter,
                    name=name + '_se')
G
Guanghua Yu 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

        conv2 = self._conv_bn_layer(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            stride=1,
            padding=0,
            if_act=False,
            name=name + '_linear')
        if num_in_filter != num_out_filter or stride != 1:
            return conv2
        else:
            return fluid.layers.elementwise_add(x=input_data, y=conv2, act=None)

    def _extra_block_dw(self,
                        input,
                        num_filters1,
                        num_filters2,
                        stride,
                        name=None):
        pointwise_conv = self._conv_bn_layer(
            input=input,
            filter_size=1,
            num_filters=int(num_filters1),
            stride=1,
            padding="SAME",
            act='relu6',
            name=name + "_extra1")
        depthwise_conv = self._conv_bn_layer(
            input=pointwise_conv,
            filter_size=3,
            num_filters=int(num_filters2),
            stride=stride,
            padding="SAME",
            num_groups=int(num_filters1),
            act='relu6',
            use_cudnn=False,
            name=name + "_extra2_dw")
        normal_conv = self._conv_bn_layer(
            input=depthwise_conv,
            filter_size=1,
            num_filters=int(num_filters2),
            stride=1,
            padding="SAME",
            act='relu6',
            name=name + "_extra2_sep")
        return normal_conv

358 359 360 361 362 363 364 365
    def _make_divisible(self, v, divisor=8, min_value=None):
        if min_value is None:
            min_value = divisor
        new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
        if new_v < 0.9 * v:
            new_v += divisor
        return new_v

G
Guanghua Yu 已提交
366 367 368 369 370 371 372 373 374 375
    def __call__(self, input):
        scale = self.scale
        inplanes = self.inplanes
        cfg = self.cfg
        blocks = []

        #conv1
        conv = self._conv_bn_layer(
            input,
            filter_size=3,
376
            num_filters=self._make_divisible(inplanes * scale),
G
Guanghua Yu 已提交
377 378 379 380 381 382 383
            stride=2,
            padding=1,
            num_groups=1,
            if_act=True,
            act='hard_swish',
            name='conv1')
        i = 0
384
        inplanes = self._make_divisible(inplanes * scale)
G
Guanghua Yu 已提交
385
        for layer_cfg in cfg:
K
Kaipeng Deng 已提交
386
            if layer_cfg[5] == 2:
387 388 389 390
                self.block_stride += 1
                if self.block_stride in self.feature_maps:
                    self.end_points.append(conv)

G
Guanghua Yu 已提交
391 392 393
            conv = self._residual_unit(
                input=conv,
                num_in_filter=inplanes,
394 395
                num_mid_filter=self._make_divisible(scale * layer_cfg[1]),
                num_out_filter=self._make_divisible(scale * layer_cfg[2]),
G
Guanghua Yu 已提交
396 397 398 399 400
                act=layer_cfg[4],
                stride=layer_cfg[5],
                filter_size=layer_cfg[0],
                use_se=layer_cfg[3],
                name='conv' + str(i + 2))
401
            inplanes = self._make_divisible(scale * layer_cfg[2])
G
Guanghua Yu 已提交
402
            i += 1
403
            self.curr_stage += 1
404 405 406
        self.block_stride += 1
        if self.block_stride in self.feature_maps:
            self.end_points.append(conv)
G
Guanghua Yu 已提交
407 408

        # extra block
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
        # check whether conv_extra is needed
        if self.block_stride < max(self.feature_maps):
            conv_extra = self._conv_bn_layer(
                conv,
                filter_size=1,
                num_filters=self._make_divisible(scale * cfg[-1][1]),
                stride=1,
                padding="SAME",
                num_groups=1,
                if_act=True,
                act='hard_swish',
                name='conv' + str(i + 2))
            self.block_stride += 1
            if self.block_stride in self.feature_maps:
                self.end_points.append(conv_extra)
            i += 1
G
Guanghua Yu 已提交
425 426 427 428
        for block_filter in self.extra_block_filters:
            conv_extra = self._extra_block_dw(conv_extra, block_filter[0],
                                              block_filter[1], 2,
                                              'conv' + str(i + 2))
429 430 431
            self.block_stride += 1
            if self.block_stride in self.feature_maps:
                self.end_points.append(conv_extra)
G
Guanghua Yu 已提交
432 433
            i += 1

434 435
        return OrderedDict([('mbv3_{}'.format(idx), feat)
                            for idx, feat in enumerate(self.end_points)])
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564


@register
class MobileNetV3RCNN(MobileNetV3):
    def __init__(
            self,
            scale=1.0,
            model_name='large',
            conv_decay=0.0,
            norm_type='bn',
            norm_decay=0.0,
            freeze_norm=True,
            feature_maps=[2, 3, 4, 5],
            lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0], ):
        super(MobileNetV3RCNN, self).__init__(
            scale=scale,
            model_name=model_name,
            conv_decay=conv_decay,
            norm_type=norm_type,
            norm_decay=norm_decay,
            lr_mult_list=lr_mult_list,
            feature_maps=feature_maps)
        self.curr_stage = 0
        self.block_stride = 1

    def _residual_unit(self,
                       input,
                       num_in_filter,
                       num_mid_filter,
                       num_out_filter,
                       stride,
                       filter_size,
                       act=None,
                       use_se=False,
                       name=None):
        input_data = input
        conv0 = self._conv_bn_layer(
            input=input,
            filter_size=1,
            num_filters=num_mid_filter,
            stride=1,
            padding=0,
            if_act=True,
            act=act,
            name=name + '_expand')

        feature_level = int(np.log2(self.block_stride))
        if feature_level in self.feature_maps and stride == 2:
            self.end_points.append(conv0)

        conv1 = self._conv_bn_layer(
            input=conv0,
            filter_size=filter_size,
            num_filters=num_mid_filter,
            stride=stride,
            padding=int((filter_size - 1) // 2),
            if_act=True,
            act=act,
            num_groups=num_mid_filter,
            use_cudnn=False,
            name=name + '_depthwise')

        if use_se:
            conv1 = self._se_block(
                input=conv1, num_out_filter=num_mid_filter, name=name + '_se')

        conv2 = self._conv_bn_layer(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            stride=1,
            padding=0,
            if_act=False,
            name=name + '_linear')
        if num_in_filter != num_out_filter or stride != 1:
            return conv2
        else:
            return fluid.layers.elementwise_add(x=input_data, y=conv2, act=None)

    def __call__(self, input):
        scale = self.scale
        inplanes = self.inplanes
        cfg = self.cfg
        #conv1
        conv = self._conv_bn_layer(
            input,
            filter_size=3,
            num_filters=self._make_divisible(inplanes * scale),
            stride=2,
            padding=1,
            num_groups=1,
            if_act=True,
            act='hard_swish',
            name='conv1')
        i = 0
        inplanes = self._make_divisible(inplanes * scale)
        for layer_cfg in cfg:
            self.block_stride *= layer_cfg[5]
            conv = self._residual_unit(
                input=conv,
                num_in_filter=inplanes,
                num_mid_filter=self._make_divisible(scale * layer_cfg[1]),
                num_out_filter=self._make_divisible(scale * layer_cfg[2]),
                act=layer_cfg[4],
                stride=layer_cfg[5],
                filter_size=layer_cfg[0],
                use_se=layer_cfg[3],
                name='conv' + str(i + 2))
            inplanes = self._make_divisible(scale * layer_cfg[2])
            i += 1
            self.curr_stage += 1

        if np.max(self.feature_maps) >= 5:
            conv = self._conv_bn_layer(
                input=conv,
                filter_size=1,
                num_filters=self._make_divisible(scale * cfg[-1][1]),
                stride=1,
                padding=0,
                num_groups=1,
                if_act=True,
                act='hard_swish',
                name='conv_last')
            self.end_points.append(conv)
            i += 1

        res = OrderedDict([('mv3_{}'.format(idx), self.end_points[idx])
                           for idx, feat_idx in enumerate(self.feature_maps)])
        return res