Matrix.h 58.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Yu Yang 已提交
17
#include <stdint.h>
18 19 20 21 22 23 24 25
#include <memory>
#include <thread>

#include "paddle/utils/Logging.h"
#include "paddle/utils/ThreadLocal.h"

#include <hl_gpu.h>

Y
Yu Yang 已提交
26
#include "BaseMatrix.h"
27 28 29
#include "MemoryHandle.h"
#include "Vector.h"
#include "paddle/utils/ThreadLocal.h"
Y
Yu Yang 已提交
30
#include "paddle/utils/TypeDefs.h"
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

namespace paddle {

enum SparseValueType { NO_VALUE = 0, FLOAT_VALUE = 1 };

/**
 * @brief  matrix sparse_format .
 *
 * nnz represents nonzero number in sparse matrix.
 *
 * SPARSE_CSR: row major matrix. length of row is height_ + 1, each element
 * represents row start index in Matrix. length of col and value are nnz.
 *
 * SPARSE_CSC: col major matrix. length of col is width_ + 1, each element
 * represents col start index in Matrix. length of col and value are nnz.
 *
 * @code
 * for example: [0, 1, 0, 2, 0;
 *               1, 0, 0, 0, 0;
 *               0, 0, 0, 2, 5];
 * SPARSE_CSR row   [0, 2, 3, 5];
 *            col   [1, 3, 0, 3, 4];
 *            value [1, 2, 1, 2, 5]
 * SPARSE_CSC col   [0, 1, 2, 2, 4, 5];
 *            row   [1, 0, 0, 2, 2];
 *            value [1, 1, 2, 2, 5]
 * @endcode
 */
enum SparseFormat { SPARSE_CSR = 0, SPARSE_CSC = 1 };

class Matrix;
class GpuMatrix;
class CpuMatrix;
class CpuSparseMatrix;
class GpuSparseMatrix;
typedef std::shared_ptr<Matrix> MatrixPtr;
typedef std::shared_ptr<GpuMatrix> GpuMatrixPtr;
typedef std::shared_ptr<CpuMatrix> CpuMatrixPtr;
typedef std::shared_ptr<GpuSparseMatrix> GpuSparseMatrixPtr;
typedef std::shared_ptr<CpuSparseMatrix> CpuSparseMatrixPtr;

/**
 * Copy or assignemnt constructor will share the data as opposed to making a
 * copy of the original data. To make a copy of the orinal data, use copyFrom()
 * instead.
 */
class Matrix : public BaseMatrix {
protected:
79 80 81 82
  Matrix(MemoryHandlePtr memHandle,
         size_t height,
         size_t width,
         bool trans,
83 84 85 86
         bool use_gpu);

  Matrix(real* data, size_t height, size_t width, bool trans, bool use_gpu);

87 88 89 90 91
  Matrix(real* data,
         size_t height,
         size_t width,
         size_t stride,
         bool trans,
92 93 94 95 96 97 98 99 100 101 102
         bool use_gpu);

  static ThreadLocal<MatrixPtr> tmpMat_;

public:
  size_t elementCnt_;  // maximal number of elements which can be held in data_
  MemoryHandlePtr memoryHandle_;

public:
  virtual ~Matrix() {}

103 104 105 106 107 108 109 110 111 112 113 114
  static MatrixPtr create(MemoryHandlePtr memHandle,
                          size_t height,
                          size_t width,
                          bool trans = false);
  static MatrixPtr create(size_t height,
                          size_t width,
                          bool trans = false,
                          bool useGpu = false);
  static MatrixPtr create(real* data,
                          size_t height,
                          size_t width,
                          bool trans = false,
115
                          bool useGpu = false);
116 117 118 119 120
  static MatrixPtr create(real* data,
                          size_t height,
                          size_t width,
                          size_t stride,
                          bool trans = false,
121 122
                          bool useGpu = false);

123 124 125
  static MatrixPtr createSparseMatrix(size_t height,
                                      size_t width,
                                      size_t nnz,
126
                                      SparseValueType valueType = FLOAT_VALUE,
127 128 129 130 131
                                      bool trans = false,
                                      bool useGpu = false);
  static MatrixPtr createSparseMatrix(size_t height,
                                      size_t width,
                                      size_t nnz,
132 133
                                      SparseValueType valueType = FLOAT_VALUE,
                                      SparseFormat foramt = SPARSE_CSR,
134 135 136 137 138 139 140 141
                                      bool trans = false,
                                      bool useGpu = false);

  static MatrixPtr createSparseMatrix(real* data,
                                      int* row,
                                      int* col,
                                      size_t height,
                                      size_t width,
142 143
                                      size_t nnz, /* used to allocate space */
                                      SparseValueType valueType, /*value type*/
144 145
                                      SparseFormat format,
                                      bool trans,
146 147 148
                                      bool useGpu);

  static void resizeOrCreateSparseMatrix(
149 150 151 152 153 154 155 156 157 158 159 160 161 162
      MatrixPtr& matrix,
      size_t height,
      size_t width,
      size_t nnz,
      SparseValueType valueType = FLOAT_VALUE,
      SparseFormat foramt = SPARSE_CSR,
      bool trans = false,
      bool useGpu = false);

  static void resizeOrCreate(MatrixPtr& a,
                             size_t height,
                             size_t width,
                             bool trans = false,
                             bool useGpu = false);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

  /**
   * @brief  set the data buffer used to hold the matrix data.
   *
   * caller should make sure that the size of data is at least
   * sizeof(real)*height*width.
   */
  void setData(real* data) {
    BaseMatrix::setData(data);
    memoryHandle_.reset();
  }

  /// the data should be contiguous
  void setData(real* data, size_t newHeight, size_t newWidth) {
    setData(data);
    height_ = newHeight;
    width_ = newWidth;
    elementCnt_ = newHeight * newWidth;
    stride_ = width_;
  }

  size_t getWidth() const { return width_; }
  size_t getHeight() const { return height_; }
  size_t getStride() const { return stride_; }
  size_t getElementCnt() const { return elementCnt_; }
  virtual real* getData() { return data_; }
  virtual const real* getData() const { return data_; }
  bool isTransposed() const { return trans_; }
  bool isContiguous() const { return stride_ == width_ || height_ == 1; }

  // If sparse matrix, need to dynamic_cast to CpuSparseMatrix/GpuSparseMatrix
  // befor call the following functions.
  // Declare these functions in the base class just easy to call them.
  // And these declarations should be moved to base class of sparse matrix
  // if refactor sparse matrix
  virtual int* getRows() const {
    LOG(FATAL) << "Not implemented";
200
    return nullptr;  //! suppress warning for no return value.
201 202 203 204
  }

  virtual int* getCols() const {
    LOG(FATAL) << "Not implemented";
205
    return nullptr;  //! suppress warning for no return value.
206 207 208 209 210 211 212 213 214
  }

  virtual SparseFormat getFormat() const {
    LOG(FATAL) << "Not implemented";
    return SPARSE_CSR;  //! suppress warning for no return value.
  }

  virtual SparseValueType getValueType() const {
    LOG(FATAL) << "Not implemented";
215
    return NO_VALUE;  //! suppress warning for no return value.
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  }

  /**
   * @brief matrix elment-wise add
   *
   * Named add3 just because add/add2 has been used in BaseMatrix.cu
   * and they are not virtual function.
   */
  virtual void add3(MatrixPtr b) { LOG(FATAL) << "Not implemented"; }

  MemoryHandlePtr getMemoryHandle() const { return memoryHandle_; }

  virtual void zeroMem() { LOG(FATAL) << "Not implemented"; }

  virtual void resetOne() { LOG(FATAL) << "Not implemented"; }

232
  void setDiag(real value);
233

234 235 236 237 238 239 240 241 242 243 244
  virtual void copyFrom(const Matrix& src) { LOG(FATAL) << "Not implemented"; }

  virtual void trimFrom(const CpuSparseMatrix& src) {
    LOG(FATAL) << "Not implemented";
  }

  // asynchronous copy
  virtual void copyFrom(const Matrix& src, hl_stream_t stream) {
    LOG(FATAL) << "Not implemented";
  }

245 246 247
  MatrixPtr subMatrix(size_t startRow,
                      size_t endRow,
                      size_t startCol,
248 249 250 251 252 253 254 255 256 257 258 259
                      size_t endCol);

  MatrixPtr subRowMatrix(size_t startRow, size_t endRow) {
    return subMatrix(startRow, endRow, 0, getWidth());
  }

  MatrixPtr subColMatrix(size_t startCol, size_t endCol) {
    return subMatrix(0, getHeight(), startCol, endCol);
  }

  virtual MatrixPtr subMatrix(size_t startRow, size_t numRows) {
    CHECK_LE(startRow + numRows, getHeight());
260 261 262 263 264
    return Matrix::create(getData() + startRow * getWidth(),
                          numRows,
                          getWidth(),
                          trans_,
                          useGpu_);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  }
  virtual MatrixPtr subMatrix(size_t startRow, size_t numRows, MatrixPtr dest) {
    CHECK_LE(startRow + numRows, getHeight());
    CHECK_EQ(useGpu_, dest->useGpu_);
    dest->setData(this->rowBuf(startRow), numRows, getWidth());
    return dest;
  }

  /**
   * If this is GpuMatrix, src is assumed to be CPU memory
   *
   * If this is CpuMatrix, src is assumed to be CPU memory
   */
  virtual void copyFrom(const real* src, size_t size) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void copyFrom(const real* src, const int64_t* seq) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief convert a int vector to a real matrix.
   *
   * (1) source and dest are both in CPU.
   *
   * (2) sizes are exactly match.
   */
  virtual void copyFrom(const IVector& src) {
    LOG(FATAL) << "copy data from int vector only available on CpuMatrix.";
  }

297
  virtual void copyByRowIndex(Matrix& b, const IVector& rowIndex) {
298 299 300 301 302 303 304 305 306 307 308
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief Create a matrix with the same type (GpuMatrix, CpuMatrix,
   *        NonValueSparseMatrix, etc.) as this.
   *
   * If height and width is zero, the new matrix will have the same size
   * as this, otherwise the new matrix will have the specified size.
   *
   */
309 310
  virtual MatrixPtr clone(size_t height = 0,
                          size_t width = 0,
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
                          bool useGpu = false) {
    LOG(FATAL) << "Not implemented";
    return nullptr;
  }

  virtual real* getRowBuf(size_t row) {
    LOG(FATAL) << "Not implemented";
    return nullptr;
  }

  virtual real getElement(size_t x, size_t y) const {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  virtual real getSum() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  virtual void accumulateColSum(Matrix& src) {
    LOG(FATAL) << "Not implemented";
  }

  virtual real getAbsSum() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  /**
   * @note Original data may not be preserved after resize().
   */
  virtual void resize(size_t newHeight, size_t newWidth) = 0;

  /**
   * @note This should only be used for sparse matrix.
   */
348 349
  virtual void resize(size_t newHeight,
                      size_t newWidth,
350
                      size_t newNnz, /* total item used to allocate space */
351 352
                      SparseValueType valueType,
                      SparseFormat format) = 0;
353 354 355 356 357 358 359

  /**
   * @brief This should only be used for sparse matrix.
   *
   * Currently must be called for each row in order.
   * The matrix is not valid until setRow is called for the last row.
   */
360 361 362
  virtual void setRow(size_t row,
                      size_t colNum,
                      const unsigned int* cols,
363 364 365 366 367 368 369 370 371 372 373 374 375 376
                      const real* values) = 0;

  virtual MatrixPtr getTranspose() = 0;

  /**
   * @brief  hard transpose.
   *
   * allocate matTrans' memory outside, then set memAlloc as false;
   * else set as true.
   */
  virtual void transpose(MatrixPtr matTrans, bool memAlloc) {
    LOG(FATAL) << "Not implemented";
  }

L
lzhao4ever 已提交
377 378
  virtual MatrixPtr getInverse() {
    LOG(FATAL) << "Not implemented";
379
    return nullptr;
L
lzhao4ever 已提交
380 381 382 383 384 385 386 387 388 389 390 391
  }

  /**
   * @brief  inverse.
   *
   * if allocate matInv's memory outside, then set memAlloc as false;
   * else set as true.
   */
  virtual void inverse(MatrixPtr matInv, bool memAlloc) {
    LOG(FATAL) << "Not implemented";
  }

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
public:
  /// Only set all variables to 0 or NULL but not free them.
  virtual void clear() {
    height_ = 0;
    width_ = 0;
    data_ = NULL;
  }

  void reshape(size_t height, size_t width);

  /// add b to each sample of this.
  virtual void addBias(Matrix& b, real scale) {
    LOG(FATAL) << "Not implemented";
  }

407 408 409 410
  virtual void addSharedBias(Matrix& b, real scale) {
    LOG(FATAL) << "Not implemented";
  }

H
hedaoyuan 已提交
411
  void addBias(Matrix& b, real scale, bool sharedBias) {
412 413 414 415 416 417 418
    if (!sharedBias) {
      addBias(b, scale);
    } else {
      addSharedBias(b, scale);
    }
  }

419 420 421 422 423
  /// add each sample from a to this.
  virtual void collectBias(Matrix& a, real scale) {
    LOG(FATAL) << "Not implemented";
  }

424 425 426 427
  virtual void collectSharedBias(Matrix& a, real scale) {
    LOG(FATAL) << "Not implemented";
  }

H
hedaoyuan 已提交
428
  void collectBias(Matrix& a, real scale, bool sharedBias) {
429 430 431 432 433 434 435
    if (!sharedBias) {
      collectBias(a, scale);
    } else {
      collectSharedBias(a, scale);
    }
  }

436 437 438
  virtual void sequenceAvgForward(Matrix& a,
                                  const IVector& startsPos,
                                  int mode) {
439 440 441 442 443 444 445 446
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = scaleAB*(a*b) + scaleT*this
   * @endcode
   */
447 448
  virtual void mul(const Matrix& a,
                   const Matrix& b,
449
                   real scaleAB,
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
                   real scaleT) {
    LOG(FATAL) << "Not implemented";
  }

  /// Add a vector (column) b to matrix a, column by column.
  virtual void addColumnVector(const Matrix& b) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * For j < codeLength:
   *   this(i, j) += vec(index(i, j), 0)
   * where index(i, j) = ((codes(i) + numClasses) >> (j + 1)) - 1
   * @endcode
   */
466 467
  virtual void addByBitCode(size_t numClasses,
                            const IVector& codes,
468 469 470 471 472 473 474 475 476 477 478 479 480 481
                            const Matrix& vec) {
    (void)numClasses;
    (void)codes;
    (void)vec;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   vec(index(i, j), 0) += this(i, j)
   * where index is same as the index for addByBitCode
   * @endcode
   */
482 483
  virtual void addByBitCodeBackward(size_t numClasses,
                                    const IVector& codes,
484 485 486 487 488 489 490 491 492 493 494 495 496 497
                                    Matrix& vec) {
    (void)numClasses;
    (void)codes;
    (void)vec;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   this(i, j) += <mat.row(index(i, j)), input.row(i)>
   * where index is same as the index for addByBitCode
   * @endcode
   */
498 499 500 501
  virtual void mulByBitCode(size_t numClasses,
                            const IVector& codes,
                            const Matrix& mat,
                            const Matrix& input) {
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    (void)numClasses;
    (void)codes;
    (void)mat;
    (void)input;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   mat.row(index(i, j)) += this(i, j) * input.row(i)
   * where index is same as the index for addByBitCode
   * @endcode
   */
  virtual void mulByBitCodeBackwardWeight(size_t numClasses,
517 518
                                          const IVector& codes,
                                          Matrix& mat,
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
                                          const Matrix& input) {
    (void)numClasses;
    (void)codes;
    (void)mat;
    (void)input;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   input.row(i) += this(i, j) * mat.row(index(i, j))
   * where index is same as the index for addByBitCode
   * @endcode
   */
  virtual void mulByBitCodeBackwardError(size_t numClasses,
                                         const IVector& codes,
536 537
                                         const Matrix& mat,
                                         Matrix& input) {
538 539 540 541 542 543 544 545 546 547 548 549 550 551
    (void)numClasses;
    (void)codes;
    (void)mat;
    (void)input;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength
   *   sum(i, 0) = scaleSum * \sum_j  bit(i, j) * this(i, j)
   * where bit(i, j) = ((codes(i) + numClasses) & 2^j) ? 1 : 0
   * @endcode
   */
552 553 554
  virtual void sumByBitCode(size_t numClasses,
                            IVector& codes,
                            Matrix& sum,
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
                            real scaleSum) {
    (void)numClasses;
    (void)codes;
    (void)sum;
    (void)scaleSum;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength
   *  this(i, j) -= bit(i, j)
   * where bit(i, j) is same as that for sumByBitCode
   * @endcode
   */
  virtual void subByBitCode(size_t numClasses_, IVector& codes) {
    (void)numClasses_;
    (void)codes;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * add the sum of each row of this to mat
   */
  virtual void rowSum(Matrix& sum) {
    (void)sum;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * set the max of each row of this to mat
   */
  virtual void rowMax(Matrix& max) {
    (void)max;
    LOG(FATAL) << "Not implemeted";
  }

592 593 594
  /**
   * set the max of each column of this to mat
   */
595 596
  virtual void colMax(Matrix& max) { LOG(FATAL) << "not implemented"; }

597 598 599 600 601 602 603 604 605 606 607
  /**
   * @brief Get the top k elements of each column of this matrix.
   *
   * The row ids and values of these elements are stored in
   * maxIds and max respectively. where k is the size of maxIds.
   * And note that the top k elements are not sorted.
   */
  virtual void colMax(IVector& maxIds, Matrix& maxVal) {
    LOG(FATAL) << "not implemented";
  }

608 609 610
  virtual void maxoutForward(Matrix& a,
                             IVector& id,
                             size_t channels,
611 612 613 614
                             size_t groups) {
    LOG(FATAL) << "not implemented";
  }

615 616 617
  virtual void maxoutBackward(Matrix& a,
                              IVector& id,
                              size_t channels,
618 619 620 621
                              size_t groups) {
    LOG(FATAL) << "not implemented";
  }

622 623 624 625 626 627
  virtual void rowMaxId(IVector& maxIds) { LOG(FATAL) << "Not implemented"; }

  /**
   * @brief Get the top k elements of each row of this matrix.
   *
   * The column ids and values of these elements are stored in
628 629
   * maxIds and max respectively. where k is the size of maxIds.
   * And note that the top k elements are not sorted.
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
   */
  virtual void rowMax(IVector& maxIds, Matrix& max) {
    LOG(FATAL) << "Not implemented";
  }

  /// normalize each row so that the sum of each row is 1.
  virtual void rowNormalizeL1(Matrix& out) {
    (void)out;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   *  this = a*b
   * @endcode
   */
646
  virtual void mul(const Matrix& a, const Matrix& b) {
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = scaleAB*(this*b) +  scaleT*this
   * @endcode
   */
  virtual void rightMul(Matrix& b, real scaleAB, real scaleT) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = this* b
   * @endcode
   */
  virtual void rightMul(Matrix& b) { LOG(FATAL) << "Not implemented"; }

  /**
   * @code
   * this = scaleAB*(a*this) +  scaleT*this
   * @endcode
   */
  virtual void leftMul(Matrix& a, real scaleAB, real scaleT) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = a*this)
   * @endcode
   */
  virtual void leftMul(Matrix& a) { LOG(FATAL) << "Not implemented"; }

  /// merge the element for each col.
  virtual void colMerge(Matrix& src) { LOG(FATAL) << "Not implemented"; }

  /// copy -log(output[label]) to this->data[i].
  virtual void oneHotCrossEntropy(Matrix& output, IVector& label) {
    LOG(FATAL) << "Not implemented";
  }

  /// calculate the error of outputV according to label.
  virtual void oneHotCrossEntropyBp(Matrix& outputV, IVector& label) {
    LOG(FATAL) << "Not implemented";
  }

  /// copy -log(output[label]) to this->data[i].
696 697
  virtual void oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                              IVector& label,
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
                                              real alpha) {
    LOG(FATAL) << "Not implemented";
  }

  /// calculate the error of outputV according to label.
  virtual void oneHotCrossEntropyWithSelfNormBp(Matrix& outputV,
                                                IVector& label,
                                                real alpha) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * \f[
   *  a[i] = \sum_{j=-(N-1)/2}^{(N-1)/2} b_{i+j} * c_{j}
   * \f]
713
   *
714 715 716 717 718 719 720 721 722
   * b contains M elements,
   * c contains N elements (N is odd),
   * b's index arithmetic is computed modulo M,
   * c's index arithmetic is computed modulo N.
   */
  virtual void circularConv(Matrix& b, Matrix& c) {
    LOG(FATAL) << "Not implemented";
  }

723 724 725 726
  virtual void circularConvDerivative(Matrix& output,
                                      Matrix& prevOut1,
                                      Matrix& prevOut2,
                                      Matrix& prevGrad1,
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
                                      Matrix& prevGrad2) {
    LOG(FATAL) << "Not implemented";
  }

  /* output_ij = exp(this_{ij}) / (sum_j exp(this_ij)) */
  virtual void softmax(Matrix& output) {
    (void)output;
    LOG(FATAL) << "Not implemeted";
  }
  virtual void sequenceSoftmax(Matrix& output, const IVector& index) {
    (void)output;
    LOG(FATAL) << "Not implemeted";
  }

  virtual void softmaxBackward(Matrix& outputV) {
    (void)outputV;
    LOG(FATAL) << "Not implemeted";
  }

  /*
    sum_i = sum_j this_ij * output_ij
    this_ij = output_ij* (this_ij - sum_i)
  */
  virtual void softmaxDerivative(Matrix& output, Matrix& sftmaxSum) {
    LOG(FATAL) << "Not implemented";
  }

  /// calculate the sum of squares diff cost.
  virtual void sumOfSquares(Matrix& output, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  /// gradient of sumOfSquares.
  virtual void sumOfSquaresBp(Matrix& outputV, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void tanh(Matrix& output) { LOG(FATAL) << "Not implemented"; }

  virtual void tanhDerivative(Matrix& output) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void softrelu(Matrix& output) { LOG(FATAL) << "Not implemented"; }

  virtual void softreluDerivative(Matrix& output) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void scaledTanh(Matrix& output, real p1, real p2) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * cosine similarity, for each row i,
   *   this[i] = cos(output1[i], output2[i])
   *
   * output2 can only have one row, then for each row i,
   *   this[i] = cos(output1[i], output2[0])
   */
  virtual void cosSim(Matrix& output1, Matrix& output2, real scale = 1.0f) {
    LOG(FATAL) << "Not implemented";
  }

791 792 793 794 795 796
  virtual void cosSimDerivative(Matrix& output,
                                Matrix& prevOut1,
                                Matrix& prevOut2,
                                Matrix& prevGrad1,
                                Matrix& prevGrad2,
                                real scale = 1.0f) {
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
    LOG(FATAL) << "Not implemented";
  }

  /// print out the values of elements to os
  virtual void print(std::ostream& os) const {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * print a part of the matrix
   * from the (top,left) value to the (height, width) value (not included)
   */
  virtual void print(std::ostream& os, size_t height, size_t width) const {
    LOG(FATAL) << "Not implemented";
  }

  /// print one row to os
  virtual void printOneRow(std::ostream& os, size_t idx) const {
    LOG(FATAL) << "Not implemented";
  }

  virtual void check(std::ostream& os, Matrix& refMat, bool printDiff = true) {}

  virtual real getMin() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }
  virtual real getMax() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  virtual void randomizeUniform() { LOG(FATAL) << "Not implemented"; }

  /**
   * @brief  calulate the error of classification
   *
   * output[i] = 1 if row i is an error.
   *
   * output[i] = 0 if row i is correct.
   */
838
  virtual void classificationError(Matrix& output, IVector& label) {
839 840 841 842 843 844 845 846 847
    LOG(FATAL) << "Not implemented";
  }

  /**
   * This function is used to calculate the convolution:
   *
   * It will expand a feature matrix according to the
   * convolution filters
   */
848 849 850 851 852 853 854 855 856 857 858 859
  virtual void convExpand(Matrix& feature,
                          int feaImgHeight,
                          int feaImgWidth,
                          int channels,
                          int blockH,
                          int blockW,
                          int strideH,
                          int strideW,
                          int paddingH,
                          int paddingW,
                          int outputH,
                          int outputW) {
860 861 862 863 864 865 866 867
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * This function is the reverse implementation of convExpand:
   *
   * Its function is to restore a expanded-matrix into a feature matrix
   */
868 869 870 871 872 873 874 875 876 877 878 879 880 881
  virtual void convShrink(Matrix& expandColMat,
                          int thisImgHeight,
                          int thisImgWidth,
                          int channels,
                          int blockH,
                          int blockW,
                          int strideH,
                          int strideW,
                          int paddingH,
                          int paddingW,
                          int outputH,
                          int outputW,
                          real alpha = 1.0f,
                          real beta = 0.0f) {
882 883 884 885 886 887 888
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * Pooling forward operation, pick out the largest element
   * in the sizeX of value
   */
889 890 891 892 893 894 895 896 897 898 899 900
  virtual void maxPoolForward(Matrix& inputMat,
                              size_t imgSizeH,
                              size_t imgSizeW,
                              size_t channels,
                              size_t sizeX,
                              size_t sizeY,
                              size_t strideH,
                              size_t strideW,
                              size_t outputH,
                              size_t outputW,
                              size_t paddingH,
                              size_t paddingW) {
901 902 903 904
    LOG(FATAL) << "Not implemeted";
  }

  /// Pooling backward operation.
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
  virtual void maxPoolBackward(Matrix& image,
                               size_t imgSizeH,
                               size_t imgSizeW,
                               Matrix& outGrad,
                               Matrix& outV,
                               size_t sizeX,
                               size_t sizeY,
                               size_t strideH,
                               size_t strideW,
                               size_t outputH,
                               size_t outputW,
                               real scaleTargets,
                               real scaleOutput,
                               size_t paddingH,
                               size_t paddingW) {
920 921 922 923
    LOG(FATAL) << "Not implemeted";
  }

  /// Pooling forward operation, caculate the average of sizeX elements.
924 925 926 927 928 929 930 931 932 933 934 935
  virtual void avgPoolForward(Matrix& input,
                              size_t imgSizeH,
                              size_t imgSizeW,
                              size_t channels,
                              size_t sizeX,
                              size_t sizeY,
                              size_t strideH,
                              size_t strideW,
                              size_t outputH,
                              size_t outputW,
                              size_t paddingH,
                              size_t paddingW) {
936 937 938
    LOG(FATAL) << "Not implemeted";
  }

939 940 941 942 943 944 945 946 947 948 949 950 951
  virtual void avgPoolBackward(Matrix& input,
                               size_t imgSizeH,
                               size_t imgSizeW,
                               size_t sizeX,
                               size_t sizeY,
                               size_t strideH,
                               size_t strideW,
                               size_t outputH,
                               size_t outputW,
                               real scaleTargets,
                               real scaleOutput,
                               size_t paddingH,
                               size_t paddingW) {
952 953 954 955 956 957 958 959 960 961 962
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * Input: one or more sequences. Each sequence contains some instances.
   *
   * Output: output size is the number of input sequences (NOT input
   * instances).
   *
   * output[i] is set to max_input[i].
   */
963 964
  virtual void maxSequenceForward(Matrix& input,
                                  const IVector& sequence,
965 966 967 968
                                  IVector& index) {
    LOG(FATAL) << "Not implemeted";
  }

969 970
  virtual void maxSequenceBackward(Matrix& outputGrad,
                                   const IVector& sequence,
971 972 973 974
                                   IVector& index) {
    LOG(FATAL) << "Not implemeted";
  }

975 976
  virtual void contextProjectionForward(Matrix& input,
                                        Matrix* weight,
977 978
                                        const IVector& sequence,
                                        int contextLength,
979 980
                                        int contextStart,
                                        size_t beginPad,
981 982 983 984
                                        bool isPadding) {
    LOG(FATAL) << "Not implemeted";
  }

985 986
  virtual void contextProjectionBackward(Matrix* inputGrad,
                                         Matrix* weightGrad,
987 988
                                         const IVector& sequence,
                                         int contextLength,
989 990
                                         int contextStart,
                                         size_t beginPad,
991 992 993 994
                                         bool isPadding) {
    LOG(FATAL) << "Not implemeted";
  }

995
  virtual void contextProjectionBackwardData(Matrix& inputGrad,
996 997 998 999 1000 1001
                                             const IVector& sequence,
                                             int contextLength,
                                             int contextStart) {
    LOG(FATAL) << "Not implemeted";
  }

1002
  virtual void contextProjectionBackwardWeight(Matrix& weightGrad,
1003 1004
                                               const IVector& sequence,
                                               int contextLength,
1005 1006
                                               int contextStart,
                                               int totalPad,
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
                                               size_t beginPad) {
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * this.row[i] += table.row[ids[i]]
   * if ids[i] == -1, it will be ignored
   * @endcode
   */
  virtual void selectRows(Matrix& table, IVector& ids) {
    (void)table;
    (void)ids;
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this[i] = table[i, id[i]]
   * @endcode
   */
  virtual void selectElements(Matrix& table, IVector& ids) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * table.row[ids[i]] += this.row[i]
   * if ids[i] == -1, it will be ignored
   * @endcode
   */
  virtual void addToRows(Matrix& table, IVector& ids) {
    (void)table;
    (void)ids;
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * table[i, id[i]] += this[i]
   * @endcode
   */
  virtual void addElements(Matrix& table, IVector& ids) {
    LOG(FATAL) << "Not implemented";
  }
  /**
   * @brief  cross entropy for multi binary labels
   *
   * @code
   * this[i] = -sum(label[i][j]*log(output[i][j])
   *           + (1-label[i][j])*log(1-output[i][j]))
1058
   * @endcode
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
   */
  virtual void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief  The gradient of cross entropy for multi binary labels on output
   *
   * @code
   * this[i][j] = -label[i][j]/output[i][j]
   *              + (1-label[i][j])/(1-output[i][j])
1070
   * @endcode
1071 1072 1073 1074 1075 1076 1077
   */
  virtual void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief  Calculate the classification error for multi binary labels
1078
   *
1079 1080 1081 1082
   * @code
   * this[i] = sum((output[i][j] >= threshold && label[i][j] == 0)
   *            || (output[i][j] < threshold && label[i][j] == 1))
   *            / output->getWidth()
1083
   * @endcode
1084
   */
1085 1086
  virtual void classificationErrorMulti(Matrix& output,
                                        Matrix& label,
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
                                        real threshold) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void paramReluForward(Matrix& data, Matrix& W) {
    LOG(FATAL) << "Not implemented";
  }
  virtual void paramReluBackwardW(Matrix& oGrad, Matrix& data) {
    LOG(FATAL) << "Not implemented";
  }
  virtual void paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W) {
    LOG(FATAL) << "Not implemented";
  }
H
hedaoyuan 已提交
1100

1101 1102 1103 1104 1105
  virtual void bilinearForward(const Matrix& in,
                               const size_t inImgH,
                               const size_t inImgW,
                               const size_t outImgH,
                               const size_t outImgW,
L
liaogang 已提交
1106 1107 1108
                               const size_t numChannels,
                               const real ratioH,
                               const real ratioW) {
1109 1110 1111 1112 1113 1114 1115
    LOG(FATAL) << "Not implemented";
  }
  virtual void bilinearBackward(const Matrix& out,
                                const size_t outImgH,
                                const size_t outImgW,
                                const size_t inImgH,
                                const size_t inImgW,
L
liaogang 已提交
1116 1117 1118
                                const size_t numChannels,
                                const real ratioH,
                                const real ratioW) {
1119 1120
    LOG(FATAL) << "Not implemented";
  }
1121 1122

  template <typename ExpressionType>
H
hedaoyuan 已提交
1123 1124 1125 1126 1127 1128 1129
  void operator=(const ExpressionType& expr) {
    if (useGpu_) {
      TensorGpuApply<real>(*this, expr);
    } else {
      TensorCpuApply<real>(*this, expr);
    }
  }
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
};

inline std::ostream& operator<<(std::ostream& os, const Matrix& mat) {
  mat.print(os);
  return os;
}

class GpuMatrix : public Matrix {
public:
  GpuMatrix();

  GpuMatrix(size_t height, size_t width, bool trans = false);
  GpuMatrix(real* data, size_t height, size_t width, bool trans = false)
      : Matrix(data, height, width, trans, true) {}
1144 1145 1146 1147
  GpuMatrix(real* data,
            size_t height,
            size_t width,
            size_t stride,
1148 1149
            bool trans = false)
      : Matrix(data, height, width, stride, trans, true) {}
1150 1151 1152
  GpuMatrix(GpuMemHandlePtr dataHandle,
            size_t height,
            size_t width,
1153 1154 1155 1156 1157 1158
            bool trans = false)
      : Matrix(dataHandle, height, width, trans, true) {}
  ~GpuMatrix();

  void zeroMem();
  void resetOne();
1159
  void setDiag(real value);
1160 1161

  void resize(size_t newHeight, size_t newWidth);
1162 1163
  void resize(size_t newHeight,
              size_t newWidth,
1164
              size_t newNnz, /* used to allocate space */
1165 1166
              SparseValueType valueType,
              SparseFormat format) {
1167 1168
    LOG(FATAL) << "Only Support Sparse Matrix";
  }
1169 1170 1171
  void setRow(size_t row,
              size_t colNum,
              const unsigned int* cols,
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
              const real* values) {
    LOG(FATAL) << "Only Support Sparse Matrix";
  }

  /**
   * Copy the data from cpu_memory buffer
   */
  void copyFrom(const real* hostSrc, size_t size);

  void copyFrom(const real* hostSrc, const int64_t* seq);

  void copyFrom(const Matrix& src, hl_stream_t stream);

  void copyFrom(const Matrix& src);

  void copyFrom(const IVector& src);

1189
  void copyByRowIndex(Matrix& b, const IVector& rowIndex);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

  MatrixPtr clone(size_t height, size_t width, bool useGpu = false);

  real getElement(size_t x, size_t y) const;

  real* getRow(size_t row) { return BaseMatrix::rowBuf(row); }
  virtual real* getRowBuf(size_t row) { return getRow(row); }

  real getSum();
  void accumulateColSum(Matrix& src);
  real getAbsSum();

  MatrixPtr getTranspose();
  void transpose(MatrixPtr matTrans, bool memAlloc);

L
lzhao4ever 已提交
1205 1206 1207
  MatrixPtr getInverse();
  void inverse(MatrixPtr matInv, bool memAlloc);

1208 1209
  /// add b to each sample of this.
  void addBias(Matrix& b, real scale);
1210
  void addSharedBias(Matrix& b, real scale);
1211 1212 1213 1214 1215 1216 1217

  /**
   * @code
   * add each sample from a to this.
   * @endcode
   */
  void collectBias(Matrix& a, real scale);
1218
  void collectSharedBias(Matrix& a, real scale);
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

  void sequenceAvgForward(Matrix& a, const IVector& startsPos, int mode);

  /**
   * @code
   * this.row[i] += table.row[ids[i]]
   * @endcode
   */
  virtual void selectRows(Matrix& table, IVector& ids);

  /**
   * @code
   * this[i] = table[i, id[i]]
   * @endcode
   */
  virtual void selectElements(Matrix& table, IVector& ids);

  /**
   * @code
   * table.row[ids[i]] += this.row[i]
   * @endcode
   */
  virtual void addToRows(Matrix& table, IVector& ids);

  void addColumnVector(const Matrix& b);

  /**
   * @code
   * this = scaleAB*(a*b) + scaleT*this
   * @endcode
   */
1250
  void mul(const Matrix& a, const Matrix& b, real scaleAB, real scaleT);
1251 1252 1253 1254 1255 1256

  /**
   * @code
   * this = a*b
   * @endcode
   */
1257
  void mul(const Matrix& a, const Matrix& b);
1258 1259 1260

  void mul(const GpuMatrix& a, const GpuMatrix& b, real scaleAB, real scaleT);

1261 1262 1263
  void mul(const GpuSparseMatrix& a,
           const GpuMatrix& b,
           real scaleAB,
1264 1265
           real scaleT);

1266 1267 1268
  void mul(const GpuMatrix& a,
           const GpuSparseMatrix& b,
           real scaleAB,
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
           real scaleT);

  /**
   * @code
   * this = scaleAB*(this*b) +  scaleT*this
   * @endcode
   */
  void rightMul(Matrix& b, real scaleAB, real scaleT);

  /**
   * @code
   * this = this* b
   * @endcode
   */
  void rightMul(Matrix& b);

  /**
   * @code
   * this = scaleAB*(a*this) +  scaleT*this
   * @endcode
   */
  void leftMul(Matrix& a, real scaleAB, real scaleT);

  /**
   * @code
   * this = a*this
   * @endcode
   */
  void leftMul(Matrix& a);

  void colMerge(Matrix& src);
  void rowSum(Matrix& sum);
  void rowMax(Matrix& max);
  void rowMax(IVector& maxIds, Matrix& max);
  void colMax(Matrix& max);
1304 1305 1306
  void colMax(IVector& maxIds, Matrix& max);
  void maxoutForward(Matrix& a, IVector& id, size_t channels, size_t groups);
  void maxoutBackward(Matrix& a, IVector& id, size_t channels, size_t groups);
1307 1308 1309

  void oneHotCrossEntropy(Matrix& output, IVector& label);
  void oneHotCrossEntropyBp(Matrix& outputV, IVector& label);
1310 1311
  void oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                      IVector& label,
1312
                                      real alpha);
1313 1314
  void oneHotCrossEntropyWithSelfNormBp(Matrix& outputV,
                                        IVector& label,
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
                                        real alpha);

  void softmax(Matrix& output);
  void sequenceSoftmax(Matrix& output, const IVector& index);
  void softmaxBackward(Matrix& outputV);
  void softmaxDerivative(Matrix& output, Matrix& sftmaxSum);

  /// calculate the sum of squares diff cost.
  void sumOfSquares(Matrix& output, Matrix& label);

  /// gradient of sumOfSquares.
  void sumOfSquaresBp(Matrix& outputV, Matrix& label);
  void tanh(Matrix& output);
  void tanhDerivative(Matrix& output);
  void softrelu(Matrix& output);
  void softreluDerivative(Matrix& output);
  void scaledTanh(Matrix& output, real p1, real p2);

  void cosSim(Matrix& output1, Matrix& output2, real scale);
1334 1335 1336 1337 1338 1339
  void cosSimDerivative(Matrix& output,
                        Matrix& prevOut1,
                        Matrix& prevOut2,
                        Matrix& prevGrad1,
                        Matrix& prevGrad2,
                        real scale);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

  virtual void print(std::ostream& os) const;
  virtual void print(std::ostream& os, size_t height, size_t width) const;

  void paramReluForward(Matrix& data, Matrix& W);
  void paramReluBackwardW(Matrix& oGrad, Matrix& data);
  void paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W);

  void check(std::ostream& os, Matrix& refMat, bool printDiff = true);
  void randomizeUniform();

1351
  void classificationError(Matrix& output, IVector& label);
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
  void convExpand(Matrix& feature,
                  int feaImgHeight,
                  int feaImgWidth,
                  int channels,
                  int blockH,
                  int blockW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  int outputH,
                  int outputW);

  void convShrink(Matrix& expandColMat,
                  int thisImgHeight,
                  int thisImgWidth,
                  int channels,
                  int blockH,
                  int blochW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingWreal,
                  int outputH,
                  int outputW,
                  real alpha = 1.0f,
                  real beta = 0.0f);

  void maxPoolForward(Matrix& inputMat,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void maxPoolBackward(Matrix& image,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       Matrix& outGrad,
                       Matrix& outV,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void avgPoolForward(Matrix& input,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void avgPoolBackward(Matrix& input,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void maxSequenceForward(Matrix& input,
                          const IVector& sequence,
1439 1440
                          IVector& index);

1441 1442
  void maxSequenceBackward(Matrix& outputGrad,
                           const IVector& sequence,
1443 1444
                           IVector& index);

1445 1446
  void contextProjectionForward(Matrix& input,
                                Matrix* weight,
1447 1448 1449 1450
                                const IVector& sequence,
                                int contextLength,
                                int contextStart,
                                size_t beginPad,
1451 1452
                                bool isPadding);

1453
  void contextProjectionBackwardData(Matrix& inputGrad,
1454
                                     const IVector& sequence,
1455 1456
                                     int contextLength,
                                     int contextStart);
1457

1458
  void contextProjectionBackwardWeight(Matrix& weightGrad,
1459 1460
                                       const IVector& sequence,
                                       int contextLength,
1461 1462
                                       int contextStart,
                                       int totalPad,
1463
                                       size_t beginPad);
H
hedaoyuan 已提交
1464

1465 1466 1467 1468 1469
  void bilinearForward(const Matrix& in,
                       const size_t inImgH,
                       const size_t inImgW,
                       const size_t outImgH,
                       const size_t outImgW,
L
liaogang 已提交
1470 1471 1472
                       const size_t numChannels,
                       const real ratioH,
                       const real ratioW);
1473 1474 1475 1476 1477 1478

  void bilinearBackward(const Matrix& out,
                        const size_t outImgH,
                        const size_t outImgW,
                        const size_t inImgH,
                        const size_t inImgW,
L
liaogang 已提交
1479 1480 1481
                        const size_t numChannels,
                        const real ratioH,
                        const real ratioW);
1482 1483 1484 1485

  void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label);

  void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label);
1486 1487

  template <typename ExpressionType>
H
hedaoyuan 已提交
1488 1489 1490
  void operator=(const ExpressionType& expr) {
    TensorGpuApply<real>(*this, expr);
  }
1491 1492 1493 1494 1495 1496 1497
};

class CpuMatrix : public Matrix {
public:
  CpuMatrix(size_t height, size_t width, bool trans = false);
  CpuMatrix(real* data, size_t height, size_t width, bool trans = false)
      : Matrix(data, height, width, trans, false) {}
1498 1499 1500 1501
  CpuMatrix(real* data,
            size_t height,
            size_t width,
            size_t stride,
1502 1503 1504
            bool trans = false)
      : Matrix(data, height, width, stride, trans, false) {}

1505 1506 1507
  CpuMatrix(CpuMemHandlePtr dataHandle,
            size_t height,
            size_t width,
1508 1509 1510 1511 1512 1513 1514
            bool trans = false)
      : Matrix(dataHandle, height, width, trans, false) {}

  ~CpuMatrix();

  void zeroMem();
  void resetOne();
1515 1516
  void setDiag(real value);

1517
  void resize(size_t newHeight, size_t newWidth);
1518 1519
  void resize(size_t newHeight,
              size_t newWidth,
1520
              size_t newNnz, /* used to allocate space */
1521 1522
              SparseValueType valueType,
              SparseFormat format) {
1523 1524
    LOG(FATAL) << "Only Support Sparse Matrix";
  }
1525 1526 1527
  void setRow(size_t row,
              size_t colNum,
              const unsigned int* cols,
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
              const real* values) {
    LOG(FATAL) << "Only Support Sparse Matrix";
  }

  real getElement(size_t x, size_t y) const;
  real getSum();
  void accumulateColSum(Matrix& src);
  real getAbsSum();

  MatrixPtr getTranspose();
  void transpose(MatrixPtr matTrans, bool memAlloc);

L
lzhao4ever 已提交
1540 1541 1542
  MatrixPtr getInverse();
  void inverse(MatrixPtr matInv, bool memAlloc);

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
  void copyFrom(const Matrix& src);

  void copyFrom(const Matrix& src, hl_stream_t stream);

  void copyFrom(const real* cpuSrc, size_t size);

  void copyFrom(const real* cpuSrc, const int64_t* seq);

  void copyFrom(const IVector& src);

  void copyFrom(CpuSparseMatrix& src);

1555
  void copyByRowIndex(Matrix& b, const IVector& rowIndex);
1556 1557 1558

  MatrixPtr clone(size_t height, size_t width, bool useGpu = false);

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
  void convExpand(Matrix& feature,
                  int feaImgHeight,
                  int feaImgWidth,
                  int channels,
                  int blcokH,
                  int blockW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  int outputH,
                  int outputW);

  void convShrink(Matrix& expandFeat,
                  int thisImgHeight,
                  int thisImgWidth,
                  int channels,
                  int blockH,
                  int blockW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  int outputH,
                  int outputW,
                  real alpha = 1.0f,
                  real beta = 0.0f);

  void maxPoolForward(Matrix& inputMat,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void maxPoolBackward(Matrix& image,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       Matrix& outGrad,
                       Matrix& outV,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void avgPoolForward(Matrix& input,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void avgPoolBackward(Matrix& input,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void maxSequenceForward(Matrix& input,
                          const IVector& sequence,
1645 1646
                          IVector& index);

1647 1648
  void maxSequenceBackward(Matrix& outputGrad,
                           const IVector& sequence,
1649 1650
                           IVector& index);

1651 1652
  void contextProjectionForward(Matrix& input,
                                Matrix* weight,
1653 1654 1655 1656
                                const IVector& sequence,
                                int contextLength,
                                int contextStart,
                                size_t beginPad,
1657 1658
                                bool isPadding);

1659 1660
  void contextProjectionBackward(Matrix* inputGrad,
                                 Matrix* weightGrad,
1661 1662 1663 1664
                                 const IVector& sequence,
                                 int contextLength,
                                 int contextStart,
                                 size_t beginPad,
1665 1666 1667 1668 1669 1670 1671 1672
                                 bool isPadding);

  real* getRow(size_t row) { return BaseMatrix::rowBuf(row); }
  virtual real* getRowBuf(size_t row) { return getRow(row); }

public:
  /// add b to each sample of this.
  void addBias(Matrix& b, real scale);
1673
  void addSharedBias(Matrix& b, real scale);
1674 1675 1676

  /// add each sample of a to this.
  void collectBias(Matrix& a, real scale);
1677
  void collectSharedBias(Matrix& a, real scale);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

  void sequenceAvgForward(Matrix& a, const IVector& startsPos, int mode);

  /**
   * @code
   * this.row[i] += table.row[ids[i]]
   * @endcode
   */
  virtual void selectRows(Matrix& table, IVector& ids);

  /**
   * @code
   * table.row[ids[i]] += this.row[i]
   * @endcode
1692
   */
1693 1694 1695 1696 1697 1698
  virtual void addToRows(Matrix& table, IVector& ids);

  /**
   * @code
   * this[i] = table[i, id[i]]
   * @endcode
1699
   */
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
  virtual void selectElements(Matrix& table, IVector& ids);

  /**
   * @code
   * table[i, id[i]] += this[i]
   * @endcode
   */
  virtual void addElements(Matrix& table, IVector& ids);

  /**
   * use abstract getRow() to get row from table.
   *
   * Define table as template instead of virtual class for performance sake.
   * internal used by above two virtual funcs.
   */
  template <typename TableMatType>
  void selectRowsImp(TableMatType& table, IVector& ids);
  template <typename TableMatType>
  void addToRowsImp(TableMatType& table, IVector& ids);

  void addColumnVector(const Matrix& b);

1722
  void mul(const Matrix& a, const Matrix& b, real scaleAB, real scaleT);
1723 1724 1725 1726
  void mul(CpuMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);

  void mul(CpuMatrix* a, CpuSparseMatrix* b, real scaleAB, real scaleT);

1727 1728 1729 1730
  static void mul(CpuMatrix* a,
                  CpuMatrix* b,
                  CpuSparseMatrix* c,
                  real scaleAB,
1731 1732 1733 1734 1735 1736 1737 1738 1739
                  real scaleT);

  /**
   * c = a * b
   *
   * use abstract getRow() to get row from B,C.
   * Define B,C as template instead of virtual class for performance sake.
   */
  template <typename MatBType, typename MatCType>
1740 1741
  static void mul(
      CpuSparseMatrix* a, MatBType* b, MatCType* c, real scaleAB, real scaleT);
1742 1743 1744

  virtual void mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);

1745
  void mul(const Matrix& a, const Matrix& b);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

  void rightMul(Matrix& b, real scaleAB, real scaleT);
  void rightMul(Matrix& b);

  void leftMul(Matrix& a, real scaleAB, real scaleT);
  void leftMul(Matrix& a);
  void colMerge(Matrix& src);
  void rowSum(Matrix& sum);
  void rowMaxId(IVector& maxIds);
  void rowMax(Matrix& max);
  void rowMax(IVector& maxIds, Matrix& maxVal);
  void colMax(Matrix& max);
1758 1759 1760
  void colMax(IVector& maxIds, Matrix& maxVal);
  void maxoutForward(Matrix& a, IVector& id, size_t channels, size_t groups);
  void maxoutBackward(Matrix& a, IVector& id, size_t channels, size_t groups);
1761 1762 1763 1764
  void rowNormalizeL1(Matrix& out);

  void oneHotCrossEntropy(Matrix& output, IVector& label);
  void oneHotCrossEntropyBp(Matrix& outputV, IVector& label);
1765 1766
  void oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                      IVector& label,
1767
                                      real alpha);
1768 1769
  void oneHotCrossEntropyWithSelfNormBp(Matrix& outputV,
                                        IVector& label,
1770 1771 1772
                                        real alpha);

  void circularConv(Matrix& b, Matrix& c);
1773 1774 1775 1776
  void circularConvDerivative(Matrix& output,
                              Matrix& prevOut1,
                              Matrix& prevOut2,
                              Matrix& prevGrad1,
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
                              Matrix& prevGrad2);

  void softmax(Matrix& output);
  void sequenceSoftmax(Matrix& output, const IVector& index);
  void softmaxDerivative(Matrix& output, Matrix& sftmaxSum);

  /// calculate the sum of squares diff cost.
  void sumOfSquares(Matrix& output, Matrix& label);

  /// gradient of sumOfSquares.
  void sumOfSquaresBp(Matrix& outputV, Matrix& label);

  void tanh(Matrix& output);
  void tanhDerivative(Matrix& output);

  void softrelu(Matrix& output);
  void softreluDerivative(Matrix& output);
  void scaledTanh(Matrix& output, real p1, real p2);

  void cosSim(Matrix& output1, Matrix& output2, real scale);
1797 1798 1799 1800 1801 1802
  void cosSimDerivative(Matrix& output,
                        Matrix& prevOut1,
                        Matrix& prevOut2,
                        Matrix& prevGrad1,
                        Matrix& prevGrad2,
                        real scale);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818

  void print(std::ostream& os) const;
  void print(std::ostream& os, size_t height, size_t width) const;
  void printOneRow(std::ostream& os, size_t idx) const;

  void paramReluForward(Matrix& data, Matrix& W);
  void paramReluBackwardW(Matrix& oGrad, Matrix& data);
  void paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W);

  void check(std::ostream& os, Matrix& refMat, bool printDiff = true);

  real getMin();
  real getMax();

  void randomizeUniform();

1819
  void classificationError(Matrix& output, IVector& label);
1820 1821 1822

  void addByBitCode(size_t numClasses, const IVector& codes, const Matrix& vec);

1823 1824
  void addByBitCodeBackward(size_t numClasses,
                            const IVector& codes,
1825 1826
                            Matrix& vec);

1827 1828 1829
  void mulByBitCode(size_t numClasses,
                    const IVector& codes,
                    const Matrix& mat,
1830 1831
                    const Matrix& input);

1832 1833 1834 1835
  void mulByBitCodeBackwardWeight(size_t numClasses,
                                  const IVector& codes,
                                  Matrix& mat,
                                  const Matrix& input);
1836

1837 1838 1839 1840
  void mulByBitCodeBackwardError(size_t numClasses,
                                 const IVector& codes,
                                 const Matrix& mat,
                                 Matrix& input);
1841

1842 1843 1844
  void sumByBitCode(size_t numClasses,
                    IVector& codes,
                    Matrix& sum,
1845 1846 1847 1848 1849 1850 1851
                    real scaleSum);

  void subByBitCode(size_t numClasses_, IVector& codes);

  void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label);
  void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label);
  void classificationErrorMulti(Matrix& output, Matrix& label, real threshold);
H
hedaoyuan 已提交
1852

1853 1854 1855 1856 1857
  void bilinearForward(const Matrix& in,
                       const size_t inImgH,
                       const size_t inImgW,
                       const size_t outImgH,
                       const size_t outImgW,
L
liaogang 已提交
1858 1859 1860
                       const size_t numChannels,
                       const real ratioH,
                       const real ratioW);
1861 1862 1863 1864 1865 1866

  void bilinearBackward(const Matrix& out,
                        const size_t outImgH,
                        const size_t outImgW,
                        const size_t inImgH,
                        const size_t inImgW,
L
liaogang 已提交
1867 1868 1869
                        const size_t numChannels,
                        const real ratioH,
                        const real ratioW);
1870 1871

  template <typename ExpressionType>
H
hedaoyuan 已提交
1872 1873 1874
  void operator=(const ExpressionType& expr) {
    TensorCpuApply<real>(*this, expr);
  }
1875 1876 1877 1878 1879 1880 1881 1882 1883
};

class SharedCpuMatrix : public CpuMatrix {
public:
  /* blockNum is number of partitions of the matrix  */
  SharedCpuMatrix(int blockNum, size_t height, size_t width, bool trans = false)
      : CpuMatrix(height, width, trans) {
    initShared(blockNum);
  }
1884 1885
  SharedCpuMatrix(
      int blockNum, real* data, size_t height, size_t width, bool trans = false)
1886 1887 1888 1889
      : CpuMatrix(data, height, width, trans) {
    initShared(blockNum);
  }

1890 1891 1892 1893 1894
  SharedCpuMatrix(int blockNum,
                  CpuMemHandlePtr dataHandle,
                  size_t height,
                  size_t width,
                  bool trans = false)
1895 1896 1897 1898
      : CpuMatrix(dataHandle, height, width, trans) {
    initShared(blockNum);
  }

1899 1900 1901 1902
  SharedCpuMatrix(CpuMemHandlePtr dataHandle,
                  size_t height,
                  size_t width,
                  bool trans = false)
1903 1904 1905 1906 1907 1908 1909 1910
      : CpuMatrix(dataHandle, height, width, trans) {
    initBlock(1);
  }

  ~SharedCpuMatrix() {}

public:
  virtual void mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);
Y
Yu Yang 已提交
1911 1912
  virtual void add(Matrix& b, real p1, real p2);
  virtual void add(real p1, real p2);
1913 1914

private:
H
hedaoyuan 已提交
1915
  using Matrix::mul;
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
  void initShared(int blockNum);
  void initBlock(int blockNum);

  int blockNum_;
  std::vector<std::unique_ptr<std::mutex>> blockLocks_;
  ThreadLocal<CpuMatrixPtr> localBuf_;
  ThreadLocal<std::vector<int>> localBufRows_;
  ThreadLocal<std::vector<int>> blockSeq_;
};

typedef struct { unsigned int col; } sparse_non_value_t;

typedef struct {
  unsigned int col;
  float value;
} sparse_float_value_t;

}  // namespace paddle
#include "ExecViaCpu.h"
新手
引导
客服 返回
顶部