Matrix.h 60.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#include <thread>
#include <stdint.h>

#include "paddle/utils/Logging.h"
#include "paddle/utils/ThreadLocal.h"

#include <hl_gpu.h>

#include "MemoryHandle.h"
#include "paddle/utils/TypeDefs.h"
#include "Vector.h"
#include "paddle/utils/ThreadLocal.h"
#include "BaseMatrix.h"

namespace paddle {

enum SparseValueType { NO_VALUE = 0, FLOAT_VALUE = 1 };

/**
 * @brief  matrix sparse_format .
 *
 * nnz represents nonzero number in sparse matrix.
 *
 * SPARSE_CSR: row major matrix. length of row is height_ + 1, each element
 * represents row start index in Matrix. length of col and value are nnz.
 *
 * SPARSE_CSC: col major matrix. length of col is width_ + 1, each element
 * represents col start index in Matrix. length of col and value are nnz.
 *
 * @code
 * for example: [0, 1, 0, 2, 0;
 *               1, 0, 0, 0, 0;
 *               0, 0, 0, 2, 5];
 * SPARSE_CSR row   [0, 2, 3, 5];
 *            col   [1, 3, 0, 3, 4];
 *            value [1, 2, 1, 2, 5]
 * SPARSE_CSC col   [0, 1, 2, 2, 4, 5];
 *            row   [1, 0, 0, 2, 2];
 *            value [1, 1, 2, 2, 5]
 * @endcode
 */
enum SparseFormat { SPARSE_CSR = 0, SPARSE_CSC = 1 };

class Matrix;
class GpuMatrix;
class CpuMatrix;
class CpuSparseMatrix;
class GpuSparseMatrix;
typedef std::shared_ptr<Matrix> MatrixPtr;
typedef std::shared_ptr<GpuMatrix> GpuMatrixPtr;
typedef std::shared_ptr<CpuMatrix> CpuMatrixPtr;
typedef std::shared_ptr<GpuSparseMatrix> GpuSparseMatrixPtr;
typedef std::shared_ptr<CpuSparseMatrix> CpuSparseMatrixPtr;

/**
 * Copy or assignemnt constructor will share the data as opposed to making a
 * copy of the original data. To make a copy of the orinal data, use copyFrom()
 * instead.
 */
class Matrix : public BaseMatrix {
protected:
79 80 81 82
  Matrix(MemoryHandlePtr memHandle,
         size_t height,
         size_t width,
         bool trans,
Z
zhangjinchao01 已提交
83 84 85 86
         bool use_gpu);

  Matrix(real* data, size_t height, size_t width, bool trans, bool use_gpu);

87 88 89 90 91
  Matrix(real* data,
         size_t height,
         size_t width,
         size_t stride,
         bool trans,
Z
zhangjinchao01 已提交
92 93 94 95 96 97 98 99 100 101 102
         bool use_gpu);

  static ThreadLocal<MatrixPtr> tmpMat_;

public:
  size_t elementCnt_;  // maximal number of elements which can be held in data_
  MemoryHandlePtr memoryHandle_;

public:
  virtual ~Matrix() {}

103 104 105 106 107 108 109 110 111 112 113 114
  static MatrixPtr create(MemoryHandlePtr memHandle,
                          size_t height,
                          size_t width,
                          bool trans = false);
  static MatrixPtr create(size_t height,
                          size_t width,
                          bool trans = false,
                          bool useGpu = false);
  static MatrixPtr create(real* data,
                          size_t height,
                          size_t width,
                          bool trans = false,
Z
zhangjinchao01 已提交
115
                          bool useGpu = false);
116 117 118 119 120
  static MatrixPtr create(real* data,
                          size_t height,
                          size_t width,
                          size_t stride,
                          bool trans = false,
Z
zhangjinchao01 已提交
121 122
                          bool useGpu = false);

123 124 125
  static MatrixPtr createSparseMatrix(size_t height,
                                      size_t width,
                                      size_t nnz,
Z
zhangjinchao01 已提交
126
                                      SparseValueType valueType = FLOAT_VALUE,
127 128 129 130 131
                                      bool trans = false,
                                      bool useGpu = false);
  static MatrixPtr createSparseMatrix(size_t height,
                                      size_t width,
                                      size_t nnz,
Z
zhangjinchao01 已提交
132 133
                                      SparseValueType valueType = FLOAT_VALUE,
                                      SparseFormat foramt = SPARSE_CSR,
134 135 136 137 138 139 140 141
                                      bool trans = false,
                                      bool useGpu = false);

  static MatrixPtr createSparseMatrix(real* data,
                                      int* row,
                                      int* col,
                                      size_t height,
                                      size_t width,
Z
zhangjinchao01 已提交
142 143
                                      size_t nnz, /* used to allocate space */
                                      SparseValueType valueType, /*value type*/
144 145
                                      SparseFormat format,
                                      bool trans,
Z
zhangjinchao01 已提交
146 147 148
                                      bool useGpu);

  static void resizeOrCreateSparseMatrix(
149 150 151 152 153 154 155 156 157 158 159 160 161 162
      MatrixPtr& matrix,
      size_t height,
      size_t width,
      size_t nnz,
      SparseValueType valueType = FLOAT_VALUE,
      SparseFormat foramt = SPARSE_CSR,
      bool trans = false,
      bool useGpu = false);

  static void resizeOrCreate(MatrixPtr& a,
                             size_t height,
                             size_t width,
                             bool trans = false,
                             bool useGpu = false);
Z
zhangjinchao01 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

  /**
   * @brief  set the data buffer used to hold the matrix data.
   *
   * caller should make sure that the size of data is at least
   * sizeof(real)*height*width.
   */
  void setData(real* data) {
    BaseMatrix::setData(data);
    memoryHandle_.reset();
  }

  /// the data should be contiguous
  void setData(real* data, size_t newHeight, size_t newWidth) {
    setData(data);
    height_ = newHeight;
    width_ = newWidth;
    elementCnt_ = newHeight * newWidth;
    stride_ = width_;
  }

  size_t getWidth() const { return width_; }
  size_t getHeight() const { return height_; }
  size_t getStride() const { return stride_; }
  size_t getElementCnt() const { return elementCnt_; }
  virtual real* getData() { return data_; }
  virtual const real* getData() const { return data_; }
  bool isTransposed() const { return trans_; }
  bool isContiguous() const { return stride_ == width_ || height_ == 1; }

  // If sparse matrix, need to dynamic_cast to CpuSparseMatrix/GpuSparseMatrix
  // befor call the following functions.
  // Declare these functions in the base class just easy to call them.
  // And these declarations should be moved to base class of sparse matrix
  // if refactor sparse matrix
  virtual int* getRows() const {
    LOG(FATAL) << "Not implemented";
200
    return nullptr;  //! suppress warning for no return value.
Z
zhangjinchao01 已提交
201 202 203 204
  }

  virtual int* getCols() const {
    LOG(FATAL) << "Not implemented";
205
    return nullptr;  //! suppress warning for no return value.
Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214
  }

  virtual SparseFormat getFormat() const {
    LOG(FATAL) << "Not implemented";
    return SPARSE_CSR;  //! suppress warning for no return value.
  }

  virtual SparseValueType getValueType() const {
    LOG(FATAL) << "Not implemented";
215
    return NO_VALUE;  //! suppress warning for no return value.
Z
zhangjinchao01 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  }

  /**
   * @brief matrix elment-wise add
   *
   * Named add3 just because add/add2 has been used in BaseMatrix.cu
   * and they are not virtual function.
   */
  virtual void add3(MatrixPtr b) { LOG(FATAL) << "Not implemented"; }

  MemoryHandlePtr getMemoryHandle() const { return memoryHandle_; }

  virtual void zeroMem() { LOG(FATAL) << "Not implemented"; }

  virtual void resetOne() { LOG(FATAL) << "Not implemented"; }

232
  void setDiag(real value);
233

Z
zhangjinchao01 已提交
234 235 236 237 238 239 240 241 242 243 244
  virtual void copyFrom(const Matrix& src) { LOG(FATAL) << "Not implemented"; }

  virtual void trimFrom(const CpuSparseMatrix& src) {
    LOG(FATAL) << "Not implemented";
  }

  // asynchronous copy
  virtual void copyFrom(const Matrix& src, hl_stream_t stream) {
    LOG(FATAL) << "Not implemented";
  }

245 246 247
  MatrixPtr subMatrix(size_t startRow,
                      size_t endRow,
                      size_t startCol,
Z
zhangjinchao01 已提交
248 249 250 251 252 253 254 255 256 257 258 259
                      size_t endCol);

  MatrixPtr subRowMatrix(size_t startRow, size_t endRow) {
    return subMatrix(startRow, endRow, 0, getWidth());
  }

  MatrixPtr subColMatrix(size_t startCol, size_t endCol) {
    return subMatrix(0, getHeight(), startCol, endCol);
  }

  virtual MatrixPtr subMatrix(size_t startRow, size_t numRows) {
    CHECK_LE(startRow + numRows, getHeight());
260 261 262 263 264
    return Matrix::create(getData() + startRow * getWidth(),
                          numRows,
                          getWidth(),
                          trans_,
                          useGpu_);
Z
zhangjinchao01 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  }
  virtual MatrixPtr subMatrix(size_t startRow, size_t numRows, MatrixPtr dest) {
    CHECK_LE(startRow + numRows, getHeight());
    CHECK_EQ(useGpu_, dest->useGpu_);
    dest->setData(this->rowBuf(startRow), numRows, getWidth());
    return dest;
  }

  /**
   * If this is GpuMatrix, src is assumed to be CPU memory
   *
   * If this is CpuMatrix, src is assumed to be CPU memory
   */
  virtual void copyFrom(const real* src, size_t size) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void copyFrom(const real* src, const int64_t* seq) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief convert a int vector to a real matrix.
   *
   * (1) source and dest are both in CPU.
   *
   * (2) sizes are exactly match.
   */
  virtual void copyFrom(const IVector& src) {
    LOG(FATAL) << "copy data from int vector only available on CpuMatrix.";
  }

297
  virtual void copyByRowIndex(Matrix& b, const IVector& rowIndex) {
Z
zhangjinchao01 已提交
298 299 300 301 302 303 304 305 306 307 308
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief Create a matrix with the same type (GpuMatrix, CpuMatrix,
   *        NonValueSparseMatrix, etc.) as this.
   *
   * If height and width is zero, the new matrix will have the same size
   * as this, otherwise the new matrix will have the specified size.
   *
   */
309 310
  virtual MatrixPtr clone(size_t height = 0,
                          size_t width = 0,
Z
zhangjinchao01 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
                          bool useGpu = false) {
    LOG(FATAL) << "Not implemented";
    return nullptr;
  }

  virtual real* getRowBuf(size_t row) {
    LOG(FATAL) << "Not implemented";
    return nullptr;
  }

  virtual real getElement(size_t x, size_t y) const {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  virtual real getSum() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  virtual void accumulateColSum(Matrix& src) {
    LOG(FATAL) << "Not implemented";
  }

  virtual real getAbsSum() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  /**
   * @note Original data may not be preserved after resize().
   */
  virtual void resize(size_t newHeight, size_t newWidth) = 0;

  /**
   * @note This should only be used for sparse matrix.
   */
348 349
  virtual void resize(size_t newHeight,
                      size_t newWidth,
Z
zhangjinchao01 已提交
350
                      size_t newNnz, /* total item used to allocate space */
351 352
                      SparseValueType valueType,
                      SparseFormat format) = 0;
Z
zhangjinchao01 已提交
353 354 355 356 357 358 359

  /**
   * @brief This should only be used for sparse matrix.
   *
   * Currently must be called for each row in order.
   * The matrix is not valid until setRow is called for the last row.
   */
360 361 362
  virtual void setRow(size_t row,
                      size_t colNum,
                      const unsigned int* cols,
Z
zhangjinchao01 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376
                      const real* values) = 0;

  virtual MatrixPtr getTranspose() = 0;

  /**
   * @brief  hard transpose.
   *
   * allocate matTrans' memory outside, then set memAlloc as false;
   * else set as true.
   */
  virtual void transpose(MatrixPtr matTrans, bool memAlloc) {
    LOG(FATAL) << "Not implemented";
  }

L
lzhao4ever 已提交
377 378
  virtual MatrixPtr getInverse() {
    LOG(FATAL) << "Not implemented";
379
    return nullptr;
L
lzhao4ever 已提交
380 381 382 383 384 385 386 387 388 389 390 391
  }

  /**
   * @brief  inverse.
   *
   * if allocate matInv's memory outside, then set memAlloc as false;
   * else set as true.
   */
  virtual void inverse(MatrixPtr matInv, bool memAlloc) {
    LOG(FATAL) << "Not implemented";
  }

Z
zhangjinchao01 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
public:
  /// Only set all variables to 0 or NULL but not free them.
  virtual void clear() {
    height_ = 0;
    width_ = 0;
    data_ = NULL;
  }

  void reshape(size_t height, size_t width);

  /// add b to each sample of this.
  virtual void addBias(Matrix& b, real scale) {
    LOG(FATAL) << "Not implemented";
  }

407 408 409 410 411 412 413 414 415 416 417 418
  virtual void addSharedBias(Matrix& b, real scale) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void addBias(Matrix& b, real scale, bool sharedBias) {
    if (!sharedBias) {
      addBias(b, scale);
    } else {
      addSharedBias(b, scale);
    }
  }

Z
zhangjinchao01 已提交
419 420 421 422 423
  /// add each sample from a to this.
  virtual void collectBias(Matrix& a, real scale) {
    LOG(FATAL) << "Not implemented";
  }

424 425 426 427 428 429 430 431 432 433 434 435
  virtual void collectSharedBias(Matrix& a, real scale) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void collectBias(Matrix& a, real scale, bool sharedBias) {
    if (!sharedBias) {
      collectBias(a, scale);
    } else {
      collectSharedBias(a, scale);
    }
  }

436 437 438
  virtual void sequenceAvgForward(Matrix& a,
                                  const IVector& startsPos,
                                  int mode) {
Z
zhangjinchao01 已提交
439 440 441 442 443 444 445 446
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = scaleAB*(a*b) + scaleT*this
   * @endcode
   */
447 448 449
  virtual void mul(const MatrixPtr a,
                   const MatrixPtr b,
                   real scaleAB,
Z
zhangjinchao01 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
                   real scaleT) {
    LOG(FATAL) << "Not implemented";
  }

  /// Add a vector (column) b to matrix a, column by column.
  virtual void addColumnVector(const Matrix& b) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * For j < codeLength:
   *   this(i, j) += vec(index(i, j), 0)
   * where index(i, j) = ((codes(i) + numClasses) >> (j + 1)) - 1
   * @endcode
   */
466 467
  virtual void addByBitCode(size_t numClasses,
                            const IVector& codes,
Z
zhangjinchao01 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481
                            const Matrix& vec) {
    (void)numClasses;
    (void)codes;
    (void)vec;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   vec(index(i, j), 0) += this(i, j)
   * where index is same as the index for addByBitCode
   * @endcode
   */
482 483
  virtual void addByBitCodeBackward(size_t numClasses,
                                    const IVector& codes,
Z
zhangjinchao01 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497
                                    Matrix& vec) {
    (void)numClasses;
    (void)codes;
    (void)vec;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   this(i, j) += <mat.row(index(i, j)), input.row(i)>
   * where index is same as the index for addByBitCode
   * @endcode
   */
498 499 500 501
  virtual void mulByBitCode(size_t numClasses,
                            const IVector& codes,
                            const Matrix& mat,
                            const Matrix& input) {
Z
zhangjinchao01 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    (void)numClasses;
    (void)codes;
    (void)mat;
    (void)input;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   mat.row(index(i, j)) += this(i, j) * input.row(i)
   * where index is same as the index for addByBitCode
   * @endcode
   */
  virtual void mulByBitCodeBackwardWeight(size_t numClasses,
517 518
                                          const IVector& codes,
                                          Matrix& mat,
Z
zhangjinchao01 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
                                          const Matrix& input) {
    (void)numClasses;
    (void)codes;
    (void)mat;
    (void)input;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   input.row(i) += this(i, j) * mat.row(index(i, j))
   * where index is same as the index for addByBitCode
   * @endcode
   */
  virtual void mulByBitCodeBackwardError(size_t numClasses,
                                         const IVector& codes,
536 537
                                         const Matrix& mat,
                                         Matrix& input) {
Z
zhangjinchao01 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551
    (void)numClasses;
    (void)codes;
    (void)mat;
    (void)input;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength
   *   sum(i, 0) = scaleSum * \sum_j  bit(i, j) * this(i, j)
   * where bit(i, j) = ((codes(i) + numClasses) & 2^j) ? 1 : 0
   * @endcode
   */
552 553 554
  virtual void sumByBitCode(size_t numClasses,
                            IVector& codes,
                            Matrix& sum,
Z
zhangjinchao01 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
                            real scaleSum) {
    (void)numClasses;
    (void)codes;
    (void)sum;
    (void)scaleSum;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength
   *  this(i, j) -= bit(i, j)
   * where bit(i, j) is same as that for sumByBitCode
   * @endcode
   */
  virtual void subByBitCode(size_t numClasses_, IVector& codes) {
    (void)numClasses_;
    (void)codes;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * add the sum of each row of this to mat
   */
  virtual void rowSum(Matrix& sum) {
    (void)sum;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * set the max of each row of this to mat
   */
  virtual void rowMax(Matrix& max) {
    (void)max;
    LOG(FATAL) << "Not implemeted";
  }

592 593 594
  /**
   * set the max of each column of this to mat
   */
Z
zhangjinchao01 已提交
595 596
  virtual void colMax(Matrix& max) { LOG(FATAL) << "not implemented"; }

597 598 599 600 601 602 603 604 605 606 607
  /**
   * @brief Get the top k elements of each column of this matrix.
   *
   * The row ids and values of these elements are stored in
   * maxIds and max respectively. where k is the size of maxIds.
   * And note that the top k elements are not sorted.
   */
  virtual void colMax(IVector& maxIds, Matrix& maxVal) {
    LOG(FATAL) << "not implemented";
  }

608 609 610
  virtual void maxoutForward(Matrix& a,
                             IVector& id,
                             size_t channels,
611 612 613 614
                             size_t groups) {
    LOG(FATAL) << "not implemented";
  }

615 616 617
  virtual void maxoutBackward(Matrix& a,
                              IVector& id,
                              size_t channels,
618 619 620 621
                              size_t groups) {
    LOG(FATAL) << "not implemented";
  }

Z
zhangjinchao01 已提交
622 623 624 625 626 627
  virtual void rowMaxId(IVector& maxIds) { LOG(FATAL) << "Not implemented"; }

  /**
   * @brief Get the top k elements of each row of this matrix.
   *
   * The column ids and values of these elements are stored in
628 629
   * maxIds and max respectively. where k is the size of maxIds.
   * And note that the top k elements are not sorted.
Z
zhangjinchao01 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
   */
  virtual void rowMax(IVector& maxIds, Matrix& max) {
    LOG(FATAL) << "Not implemented";
  }

  /// normalize each row so that the sum of each row is 1.
  virtual void rowNormalizeL1(Matrix& out) {
    (void)out;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   *  this = a*b
   * @endcode
   */
  virtual void mul(const MatrixPtr a, const MatrixPtr b) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = scaleAB*(this*b) +  scaleT*this
   * @endcode
   */
  virtual void rightMul(Matrix& b, real scaleAB, real scaleT) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = this* b
   * @endcode
   */
  virtual void rightMul(Matrix& b) { LOG(FATAL) << "Not implemented"; }

  /**
   * @code
   * this = scaleAB*(a*this) +  scaleT*this
   * @endcode
   */
  virtual void leftMul(Matrix& a, real scaleAB, real scaleT) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = a*this)
   * @endcode
   */
  virtual void leftMul(Matrix& a) { LOG(FATAL) << "Not implemented"; }

  /// merge the element for each col.
  virtual void colMerge(Matrix& src) { LOG(FATAL) << "Not implemented"; }

  /// copy -log(output[label]) to this->data[i].
  virtual void oneHotCrossEntropy(Matrix& output, IVector& label) {
    LOG(FATAL) << "Not implemented";
  }

  /// calculate the error of outputV according to label.
  virtual void oneHotCrossEntropyBp(Matrix& outputV, IVector& label) {
    LOG(FATAL) << "Not implemented";
  }

  /// copy -log(output[label]) to this->data[i].
696 697
  virtual void oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                              IVector& label,
Z
zhangjinchao01 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
                                              real alpha) {
    LOG(FATAL) << "Not implemented";
  }

  /// calculate the error of outputV according to label.
  virtual void oneHotCrossEntropyWithSelfNormBp(Matrix& outputV,
                                                IVector& label,
                                                real alpha) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * \f[
   *  a[i] = \sum_{j=-(N-1)/2}^{(N-1)/2} b_{i+j} * c_{j}
   * \f]
713
   *
Z
zhangjinchao01 已提交
714 715 716 717 718 719 720 721 722
   * b contains M elements,
   * c contains N elements (N is odd),
   * b's index arithmetic is computed modulo M,
   * c's index arithmetic is computed modulo N.
   */
  virtual void circularConv(Matrix& b, Matrix& c) {
    LOG(FATAL) << "Not implemented";
  }

723 724 725 726
  virtual void circularConvDerivative(Matrix& output,
                                      Matrix& prevOut1,
                                      Matrix& prevOut2,
                                      Matrix& prevGrad1,
Z
zhangjinchao01 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
                                      Matrix& prevGrad2) {
    LOG(FATAL) << "Not implemented";
  }

  /* output_ij = exp(this_{ij}) / (sum_j exp(this_ij)) */
  virtual void softmax(Matrix& output) {
    (void)output;
    LOG(FATAL) << "Not implemeted";
  }
  virtual void sequenceSoftmax(Matrix& output, const IVector& index) {
    (void)output;
    LOG(FATAL) << "Not implemeted";
  }

  virtual void softmaxBackward(Matrix& outputV) {
    (void)outputV;
    LOG(FATAL) << "Not implemeted";
  }

  /*
    sum_i = sum_j this_ij * output_ij
    this_ij = output_ij* (this_ij - sum_i)
  */
  virtual void softmaxDerivative(Matrix& output, Matrix& sftmaxSum) {
    LOG(FATAL) << "Not implemented";
  }

  /// calculate the sum of squares diff cost.
  virtual void sumOfSquares(Matrix& output, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  /// gradient of sumOfSquares.
  virtual void sumOfSquaresBp(Matrix& outputV, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void tanh(Matrix& output) { LOG(FATAL) << "Not implemented"; }

  virtual void tanhDerivative(Matrix& output) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void softrelu(Matrix& output) { LOG(FATAL) << "Not implemented"; }

  virtual void softreluDerivative(Matrix& output) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void scaledTanh(Matrix& output, real p1, real p2) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * cosine similarity, for each row i,
   *   this[i] = cos(output1[i], output2[i])
   *
   * output2 can only have one row, then for each row i,
   *   this[i] = cos(output1[i], output2[0])
   */
  virtual void cosSim(Matrix& output1, Matrix& output2, real scale = 1.0f) {
    LOG(FATAL) << "Not implemented";
  }

791 792 793 794 795 796
  virtual void cosSimDerivative(Matrix& output,
                                Matrix& prevOut1,
                                Matrix& prevOut2,
                                Matrix& prevGrad1,
                                Matrix& prevGrad2,
                                real scale = 1.0f) {
Z
zhangjinchao01 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
    LOG(FATAL) << "Not implemented";
  }

  /// print out the values of elements to os
  virtual void print(std::ostream& os) const {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * print a part of the matrix
   * from the (top,left) value to the (height, width) value (not included)
   */
  virtual void print(std::ostream& os, size_t height, size_t width) const {
    LOG(FATAL) << "Not implemented";
  }

  /// print one row to os
  virtual void printOneRow(std::ostream& os, size_t idx) const {
    LOG(FATAL) << "Not implemented";
  }

  virtual void check(std::ostream& os, Matrix& refMat, bool printDiff = true) {}

  virtual real getMin() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }
  virtual real getMax() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  virtual void randomizeUniform() { LOG(FATAL) << "Not implemented"; }

  /**
   * @brief  calulate the error of classification
   *
   * output[i] = 1 if row i is an error.
   *
   * output[i] = 0 if row i is correct.
   */
  virtual void classificationError(MatrixPtr output, IVectorPtr label) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * This function is used to calculate the convolution:
   *
   * It will expand a feature matrix according to the
   * convolution filters
   */
848 849 850 851 852 853 854 855 856 857 858 859
  virtual void convExpand(Matrix& feature,
                          int feaImgHeight,
                          int feaImgWidth,
                          int channels,
                          int blockH,
                          int blockW,
                          int strideH,
                          int strideW,
                          int paddingH,
                          int paddingW,
                          int outputH,
                          int outputW) {
Z
zhangjinchao01 已提交
860 861 862 863 864 865 866 867
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * This function is the reverse implementation of convExpand:
   *
   * Its function is to restore a expanded-matrix into a feature matrix
   */
868 869 870 871 872 873 874 875 876 877 878 879 880 881
  virtual void convShrink(Matrix& expandColMat,
                          int thisImgHeight,
                          int thisImgWidth,
                          int channels,
                          int blockH,
                          int blockW,
                          int strideH,
                          int strideW,
                          int paddingH,
                          int paddingW,
                          int outputH,
                          int outputW,
                          real alpha = 1.0f,
                          real beta = 0.0f) {
Z
zhangjinchao01 已提交
882 883 884 885 886 887 888
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * Pooling forward operation, pick out the largest element
   * in the sizeX of value
   */
889 890 891 892 893 894 895 896 897 898 899 900
  virtual void maxPoolForward(Matrix& inputMat,
                              size_t imgSizeH,
                              size_t imgSizeW,
                              size_t channels,
                              size_t sizeX,
                              size_t sizeY,
                              size_t strideH,
                              size_t strideW,
                              size_t outputH,
                              size_t outputW,
                              size_t paddingH,
                              size_t paddingW) {
Z
zhangjinchao01 已提交
901 902 903 904
    LOG(FATAL) << "Not implemeted";
  }

  /// Pooling backward operation.
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
  virtual void maxPoolBackward(Matrix& image,
                               size_t imgSizeH,
                               size_t imgSizeW,
                               Matrix& outGrad,
                               Matrix& outV,
                               size_t sizeX,
                               size_t sizeY,
                               size_t strideH,
                               size_t strideW,
                               size_t outputH,
                               size_t outputW,
                               real scaleTargets,
                               real scaleOutput,
                               size_t paddingH,
                               size_t paddingW) {
Z
zhangjinchao01 已提交
920 921 922 923
    LOG(FATAL) << "Not implemeted";
  }

  /// Pooling forward operation, caculate the average of sizeX elements.
924 925 926 927 928 929 930 931 932 933 934 935
  virtual void avgPoolForward(Matrix& input,
                              size_t imgSizeH,
                              size_t imgSizeW,
                              size_t channels,
                              size_t sizeX,
                              size_t sizeY,
                              size_t strideH,
                              size_t strideW,
                              size_t outputH,
                              size_t outputW,
                              size_t paddingH,
                              size_t paddingW) {
Z
zhangjinchao01 已提交
936 937 938
    LOG(FATAL) << "Not implemeted";
  }

939 940 941 942 943 944 945 946 947 948 949 950 951
  virtual void avgPoolBackward(Matrix& input,
                               size_t imgSizeH,
                               size_t imgSizeW,
                               size_t sizeX,
                               size_t sizeY,
                               size_t strideH,
                               size_t strideW,
                               size_t outputH,
                               size_t outputW,
                               real scaleTargets,
                               real scaleOutput,
                               size_t paddingH,
                               size_t paddingW) {
Z
zhangjinchao01 已提交
952 953 954 955
    LOG(FATAL) << "Not implemeted";
  }

  /// normalize-operation.
956 957 958 959 960 961 962
  virtual void crossMapNormalFwd(Matrix& input,
                                 size_t imgSizeH,
                                 size_t imgSizeW,
                                 Matrix& denoms,
                                 size_t channels,
                                 size_t sizeX,
                                 float scale,
963
                                 float pow) {
Z
zhangjinchao01 已提交
964 965 966
    LOG(FATAL) << "Not implemeted";
  }

967 968 969 970 971 972 973 974 975
  virtual void crossMapNormalBwd(Matrix& localGrad,
                                 Matrix& denoms,
                                 Matrix& preOutV,
                                 Matrix& localOutV,
                                 size_t channels,
                                 size_t imgSizeH,
                                 size_t imgSizeW,
                                 size_t size,
                                 float scale,
976
                                 float pow) {
Z
zhangjinchao01 已提交
977 978 979 980 981 982 983 984 985 986 987
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * Input: one or more sequences. Each sequence contains some instances.
   *
   * Output: output size is the number of input sequences (NOT input
   * instances).
   *
   * output[i] is set to max_input[i].
   */
988 989
  virtual void maxSequenceForward(Matrix& input,
                                  const IVector& sequence,
Z
zhangjinchao01 已提交
990 991 992 993
                                  IVector& index) {
    LOG(FATAL) << "Not implemeted";
  }

994 995
  virtual void maxSequenceBackward(Matrix& outputGrad,
                                   const IVector& sequence,
Z
zhangjinchao01 已提交
996 997 998 999
                                   IVector& index) {
    LOG(FATAL) << "Not implemeted";
  }

1000 1001
  virtual void contextProjectionForward(MatrixPtr input,
                                        MatrixPtr weight,
Z
zhangjinchao01 已提交
1002 1003
                                        const IVector& sequence,
                                        int contextLength,
1004 1005
                                        int contextStart,
                                        size_t beginPad,
Z
zhangjinchao01 已提交
1006 1007 1008 1009 1010 1011 1012 1013
                                        bool isPadding) {
    LOG(FATAL) << "Not implemeted";
  }

  virtual void contextProjectionBackward(MatrixPtr inputGrad,
                                         MatrixPtr weightGrad,
                                         const IVector& sequence,
                                         int contextLength,
1014 1015
                                         int contextStart,
                                         size_t beginPad,
Z
zhangjinchao01 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
                                         bool isPadding) {
    LOG(FATAL) << "Not implemeted";
  }

  virtual void contextProjectionBackwardData(MatrixPtr inputGrad,
                                             const IVector& sequence,
                                             int contextLength,
                                             int contextStart) {
    LOG(FATAL) << "Not implemeted";
  }

  virtual void contextProjectionBackwardWeight(MatrixPtr weightGrad,
                                               const IVector& sequence,
                                               int contextLength,
1030 1031
                                               int contextStart,
                                               int totalPad,
Z
zhangjinchao01 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
                                               size_t beginPad) {
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * this.row[i] += table.row[ids[i]]
   * if ids[i] == -1, it will be ignored
   * @endcode
   */
  virtual void selectRows(Matrix& table, IVector& ids) {
    (void)table;
    (void)ids;
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this[i] = table[i, id[i]]
   * @endcode
   */
  virtual void selectElements(Matrix& table, IVector& ids) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * table.row[ids[i]] += this.row[i]
   * if ids[i] == -1, it will be ignored
   * @endcode
   */
  virtual void addToRows(Matrix& table, IVector& ids) {
    (void)table;
    (void)ids;
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * table[i, id[i]] += this[i]
   * @endcode
   */
  virtual void addElements(Matrix& table, IVector& ids) {
    LOG(FATAL) << "Not implemented";
  }
  /**
   * @brief  cross entropy for multi binary labels
   *
   * @code
   * this[i] = -sum(label[i][j]*log(output[i][j])
   *           + (1-label[i][j])*log(1-output[i][j]))
1083
   * @endcode
Z
zhangjinchao01 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
   */
  virtual void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief  The gradient of cross entropy for multi binary labels on output
   *
   * @code
   * this[i][j] = -label[i][j]/output[i][j]
   *              + (1-label[i][j])/(1-output[i][j])
1095
   * @endcode
Z
zhangjinchao01 已提交
1096 1097 1098 1099 1100 1101 1102
   */
  virtual void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief  Calculate the classification error for multi binary labels
1103
   *
Z
zhangjinchao01 已提交
1104 1105 1106 1107
   * @code
   * this[i] = sum((output[i][j] >= threshold && label[i][j] == 0)
   *            || (output[i][j] < threshold && label[i][j] == 1))
   *            / output->getWidth()
1108
   * @endcode
Z
zhangjinchao01 已提交
1109
   */
1110 1111
  virtual void classificationErrorMulti(Matrix& output,
                                        Matrix& label,
Z
zhangjinchao01 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
                                        real threshold) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void paramReluForward(Matrix& data, Matrix& W) {
    LOG(FATAL) << "Not implemented";
  }
  virtual void paramReluBackwardW(Matrix& oGrad, Matrix& data) {
    LOG(FATAL) << "Not implemented";
  }
  virtual void paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W) {
    LOG(FATAL) << "Not implemented";
  }
H
hedaoyuan 已提交
1125

L
liaogang 已提交
1126 1127 1128 1129 1130
  virtual void bilinearForward(const Matrix& in,
                               const size_t inImgH,
                               const size_t inImgW,
                               const size_t outImgH,
                               const size_t outImgW,
L
liaogang 已提交
1131 1132 1133
                               const size_t numChannels,
                               const real ratioH,
                               const real ratioW) {
L
liaogang 已提交
1134 1135 1136 1137 1138 1139 1140
    LOG(FATAL) << "Not implemented";
  }
  virtual void bilinearBackward(const Matrix& out,
                                const size_t outImgH,
                                const size_t outImgW,
                                const size_t inImgH,
                                const size_t inImgW,
L
liaogang 已提交
1141 1142 1143
                                const size_t numChannels,
                                const real ratioH,
                                const real ratioW) {
L
liaogang 已提交
1144 1145
    LOG(FATAL) << "Not implemented";
  }
1146 1147

  template <typename ExpressionType>
H
hedaoyuan 已提交
1148 1149 1150 1151 1152 1153 1154
  void operator=(const ExpressionType& expr) {
    if (useGpu_) {
      TensorGpuApply<real>(*this, expr);
    } else {
      TensorCpuApply<real>(*this, expr);
    }
  }
Z
zhangjinchao01 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
};

inline std::ostream& operator<<(std::ostream& os, const Matrix& mat) {
  mat.print(os);
  return os;
}

class GpuMatrix : public Matrix {
public:
  GpuMatrix();

  GpuMatrix(size_t height, size_t width, bool trans = false);
  GpuMatrix(real* data, size_t height, size_t width, bool trans = false)
      : Matrix(data, height, width, trans, true) {}
1169 1170 1171 1172
  GpuMatrix(real* data,
            size_t height,
            size_t width,
            size_t stride,
Z
zhangjinchao01 已提交
1173 1174
            bool trans = false)
      : Matrix(data, height, width, stride, trans, true) {}
1175 1176 1177
  GpuMatrix(GpuMemHandlePtr dataHandle,
            size_t height,
            size_t width,
Z
zhangjinchao01 已提交
1178 1179 1180 1181 1182 1183
            bool trans = false)
      : Matrix(dataHandle, height, width, trans, true) {}
  ~GpuMatrix();

  void zeroMem();
  void resetOne();
1184
  void setDiag(real value);
Z
zhangjinchao01 已提交
1185 1186

  void resize(size_t newHeight, size_t newWidth);
1187 1188
  void resize(size_t newHeight,
              size_t newWidth,
Z
zhangjinchao01 已提交
1189
              size_t newNnz, /* used to allocate space */
1190 1191
              SparseValueType valueType,
              SparseFormat format) {
Z
zhangjinchao01 已提交
1192 1193
    LOG(FATAL) << "Only Support Sparse Matrix";
  }
1194 1195 1196
  void setRow(size_t row,
              size_t colNum,
              const unsigned int* cols,
Z
zhangjinchao01 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
              const real* values) {
    LOG(FATAL) << "Only Support Sparse Matrix";
  }

  /**
   * Copy the data from cpu_memory buffer
   */
  void copyFrom(const real* hostSrc, size_t size);

  void copyFrom(const real* hostSrc, const int64_t* seq);

  void copyFrom(const Matrix& src, hl_stream_t stream);

  void copyFrom(const Matrix& src);

  void copyFrom(const IVector& src);

1214
  void copyByRowIndex(Matrix& b, const IVector& rowIndex);
Z
zhangjinchao01 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

  MatrixPtr clone(size_t height, size_t width, bool useGpu = false);

  real getElement(size_t x, size_t y) const;

  real* getRow(size_t row) { return BaseMatrix::rowBuf(row); }
  virtual real* getRowBuf(size_t row) { return getRow(row); }

  real getSum();
  void accumulateColSum(Matrix& src);
  real getAbsSum();

  MatrixPtr getTranspose();
  void transpose(MatrixPtr matTrans, bool memAlloc);

L
lzhao4ever 已提交
1230 1231 1232
  MatrixPtr getInverse();
  void inverse(MatrixPtr matInv, bool memAlloc);

Z
zhangjinchao01 已提交
1233 1234
  /// add b to each sample of this.
  void addBias(Matrix& b, real scale);
1235
  void addSharedBias(Matrix& b, real scale);
Z
zhangjinchao01 已提交
1236 1237 1238 1239 1240 1241 1242

  /**
   * @code
   * add each sample from a to this.
   * @endcode
   */
  void collectBias(Matrix& a, real scale);
1243
  void collectSharedBias(Matrix& a, real scale);
Z
zhangjinchao01 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

  void sequenceAvgForward(Matrix& a, const IVector& startsPos, int mode);

  /**
   * @code
   * this.row[i] += table.row[ids[i]]
   * @endcode
   */
  virtual void selectRows(Matrix& table, IVector& ids);

  /**
   * @code
   * this[i] = table[i, id[i]]
   * @endcode
   */
  virtual void selectElements(Matrix& table, IVector& ids);

  /**
   * @code
   * table.row[ids[i]] += this.row[i]
   * @endcode
   */
  virtual void addToRows(Matrix& table, IVector& ids);

  void addColumnVector(const Matrix& b);

  /**
   * @code
   * this = scaleAB*(a*b) + scaleT*this
   * @endcode
   */
  void mul(const MatrixPtr a, const MatrixPtr b, real scaleAB, real scaleT);

  /**
   * @code
   * this = a*b
   * @endcode
   */
  void mul(const MatrixPtr a, const MatrixPtr b);

  void mul(const GpuMatrix& a, const GpuMatrix& b, real scaleAB, real scaleT);

1286 1287 1288
  void mul(const GpuSparseMatrix& a,
           const GpuMatrix& b,
           real scaleAB,
Z
zhangjinchao01 已提交
1289 1290
           real scaleT);

1291 1292 1293
  void mul(const GpuMatrix& a,
           const GpuSparseMatrix& b,
           real scaleAB,
Z
zhangjinchao01 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
           real scaleT);

  /**
   * @code
   * this = scaleAB*(this*b) +  scaleT*this
   * @endcode
   */
  void rightMul(Matrix& b, real scaleAB, real scaleT);

  /**
   * @code
   * this = this* b
   * @endcode
   */
  void rightMul(Matrix& b);

  /**
   * @code
   * this = scaleAB*(a*this) +  scaleT*this
   * @endcode
   */
  void leftMul(Matrix& a, real scaleAB, real scaleT);

  /**
   * @code
   * this = a*this
   * @endcode
   */
  void leftMul(Matrix& a);

  void colMerge(Matrix& src);
  void rowSum(Matrix& sum);
  void rowMax(Matrix& max);
  void rowMax(IVector& maxIds, Matrix& max);
  void colMax(Matrix& max);
1329 1330 1331
  void colMax(IVector& maxIds, Matrix& max);
  void maxoutForward(Matrix& a, IVector& id, size_t channels, size_t groups);
  void maxoutBackward(Matrix& a, IVector& id, size_t channels, size_t groups);
Z
zhangjinchao01 已提交
1332 1333 1334

  void oneHotCrossEntropy(Matrix& output, IVector& label);
  void oneHotCrossEntropyBp(Matrix& outputV, IVector& label);
1335 1336
  void oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                      IVector& label,
Z
zhangjinchao01 已提交
1337
                                      real alpha);
1338 1339
  void oneHotCrossEntropyWithSelfNormBp(Matrix& outputV,
                                        IVector& label,
Z
zhangjinchao01 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
                                        real alpha);

  void softmax(Matrix& output);
  void sequenceSoftmax(Matrix& output, const IVector& index);
  void softmaxBackward(Matrix& outputV);
  void softmaxDerivative(Matrix& output, Matrix& sftmaxSum);

  /// calculate the sum of squares diff cost.
  void sumOfSquares(Matrix& output, Matrix& label);

  /// gradient of sumOfSquares.
  void sumOfSquaresBp(Matrix& outputV, Matrix& label);
  void tanh(Matrix& output);
  void tanhDerivative(Matrix& output);
  void softrelu(Matrix& output);
  void softreluDerivative(Matrix& output);
  void scaledTanh(Matrix& output, real p1, real p2);

  void cosSim(Matrix& output1, Matrix& output2, real scale);
1359 1360 1361 1362 1363 1364
  void cosSimDerivative(Matrix& output,
                        Matrix& prevOut1,
                        Matrix& prevOut2,
                        Matrix& prevGrad1,
                        Matrix& prevGrad2,
                        real scale);
Z
zhangjinchao01 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

  virtual void print(std::ostream& os) const;
  virtual void print(std::ostream& os, size_t height, size_t width) const;

  void paramReluForward(Matrix& data, Matrix& W);
  void paramReluBackwardW(Matrix& oGrad, Matrix& data);
  void paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W);

  void check(std::ostream& os, Matrix& refMat, bool printDiff = true);
  void randomizeUniform();

  void classificationError(MatrixPtr output, IVectorPtr label);

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
  void convExpand(Matrix& feature,
                  int feaImgHeight,
                  int feaImgWidth,
                  int channels,
                  int blockH,
                  int blockW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  int outputH,
                  int outputW);

  void convShrink(Matrix& expandColMat,
                  int thisImgHeight,
                  int thisImgWidth,
                  int channels,
                  int blockH,
                  int blochW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingWreal,
                  int outputH,
                  int outputW,
                  real alpha = 1.0f,
                  real beta = 0.0f);

  void maxPoolForward(Matrix& inputMat,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void maxPoolBackward(Matrix& image,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       Matrix& outGrad,
                       Matrix& outV,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void avgPoolForward(Matrix& input,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void avgPoolBackward(Matrix& input,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void crossMapNormalFwd(Matrix& input,
                         size_t imgSizeH,
                         size_t imgSizeW,
                         Matrix& denoms,
                         size_t channels,
                         size_t sizeX,
                         float scale,
                         float pow);

  void crossMapNormalBwd(Matrix& localGrad,
                         Matrix& denoms,
                         Matrix& preOutV,
                         Matrix& localOutV,
                         size_t channels,
                         size_t imgSizeH,
                         size_t imgSizeW,
                         size_t sizeX,
                         float scale,
                         float pow);

  void maxSequenceForward(Matrix& input,
                          const IVector& sequence,
Z
zhangjinchao01 已提交
1484 1485
                          IVector& index);

1486 1487
  void maxSequenceBackward(Matrix& outputGrad,
                           const IVector& sequence,
Z
zhangjinchao01 已提交
1488 1489
                           IVector& index);

1490 1491 1492 1493 1494 1495
  void contextProjectionForward(MatrixPtr input,
                                MatrixPtr weight,
                                const IVector& sequence,
                                int contextLength,
                                int contextStart,
                                size_t beginPad,
Z
zhangjinchao01 已提交
1496 1497 1498 1499
                                bool isPadding);

  void contextProjectionBackwardData(MatrixPtr inputGrad,
                                     const IVector& sequence,
1500 1501
                                     int contextLength,
                                     int contextStart);
Z
zhangjinchao01 已提交
1502 1503 1504 1505

  void contextProjectionBackwardWeight(MatrixPtr weightGrad,
                                       const IVector& sequence,
                                       int contextLength,
1506 1507
                                       int contextStart,
                                       int totalPad,
Z
zhangjinchao01 已提交
1508
                                       size_t beginPad);
H
hedaoyuan 已提交
1509

L
liaogang 已提交
1510 1511 1512 1513 1514
  void bilinearForward(const Matrix& in,
                       const size_t inImgH,
                       const size_t inImgW,
                       const size_t outImgH,
                       const size_t outImgW,
L
liaogang 已提交
1515 1516 1517
                       const size_t numChannels,
                       const real ratioH,
                       const real ratioW);
L
liaogang 已提交
1518 1519 1520 1521 1522 1523

  void bilinearBackward(const Matrix& out,
                        const size_t outImgH,
                        const size_t outImgW,
                        const size_t inImgH,
                        const size_t inImgW,
L
liaogang 已提交
1524 1525 1526
                        const size_t numChannels,
                        const real ratioH,
                        const real ratioW);
1527 1528 1529 1530

  void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label);

  void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label);
1531 1532

  template <typename ExpressionType>
H
hedaoyuan 已提交
1533 1534 1535
  void operator=(const ExpressionType& expr) {
    TensorGpuApply<real>(*this, expr);
  }
Z
zhangjinchao01 已提交
1536 1537 1538 1539 1540 1541 1542
};

class CpuMatrix : public Matrix {
public:
  CpuMatrix(size_t height, size_t width, bool trans = false);
  CpuMatrix(real* data, size_t height, size_t width, bool trans = false)
      : Matrix(data, height, width, trans, false) {}
1543 1544 1545 1546
  CpuMatrix(real* data,
            size_t height,
            size_t width,
            size_t stride,
Z
zhangjinchao01 已提交
1547 1548 1549
            bool trans = false)
      : Matrix(data, height, width, stride, trans, false) {}

1550 1551 1552
  CpuMatrix(CpuMemHandlePtr dataHandle,
            size_t height,
            size_t width,
Z
zhangjinchao01 已提交
1553 1554 1555 1556 1557 1558 1559
            bool trans = false)
      : Matrix(dataHandle, height, width, trans, false) {}

  ~CpuMatrix();

  void zeroMem();
  void resetOne();
1560 1561
  void setDiag(real value);

Z
zhangjinchao01 已提交
1562
  void resize(size_t newHeight, size_t newWidth);
1563 1564
  void resize(size_t newHeight,
              size_t newWidth,
Z
zhangjinchao01 已提交
1565
              size_t newNnz, /* used to allocate space */
1566 1567
              SparseValueType valueType,
              SparseFormat format) {
Z
zhangjinchao01 已提交
1568 1569
    LOG(FATAL) << "Only Support Sparse Matrix";
  }
1570 1571 1572
  void setRow(size_t row,
              size_t colNum,
              const unsigned int* cols,
Z
zhangjinchao01 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
              const real* values) {
    LOG(FATAL) << "Only Support Sparse Matrix";
  }

  real getElement(size_t x, size_t y) const;
  real getSum();
  void accumulateColSum(Matrix& src);
  real getAbsSum();

  MatrixPtr getTranspose();
  void transpose(MatrixPtr matTrans, bool memAlloc);

L
lzhao4ever 已提交
1585 1586 1587
  MatrixPtr getInverse();
  void inverse(MatrixPtr matInv, bool memAlloc);

Z
zhangjinchao01 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
  void copyFrom(const Matrix& src);

  void copyFrom(const Matrix& src, hl_stream_t stream);

  void copyFrom(const real* cpuSrc, size_t size);

  void copyFrom(const real* cpuSrc, const int64_t* seq);

  void copyFrom(const IVector& src);

  void copyFrom(CpuSparseMatrix& src);

1600
  void copyByRowIndex(Matrix& b, const IVector& rowIndex);
Z
zhangjinchao01 已提交
1601 1602 1603

  MatrixPtr clone(size_t height, size_t width, bool useGpu = false);

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
  void convExpand(Matrix& feature,
                  int feaImgHeight,
                  int feaImgWidth,
                  int channels,
                  int blcokH,
                  int blockW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  int outputH,
                  int outputW);

  void convShrink(Matrix& expandFeat,
                  int thisImgHeight,
                  int thisImgWidth,
                  int channels,
                  int blockH,
                  int blockW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  int outputH,
                  int outputW,
                  real alpha = 1.0f,
                  real beta = 0.0f);

  void maxPoolForward(Matrix& inputMat,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void maxPoolBackward(Matrix& image,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       Matrix& outGrad,
                       Matrix& outV,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void avgPoolForward(Matrix& input,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void avgPoolBackward(Matrix& input,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void crossMapNormalFwd(Matrix& input,
                         size_t imgSizeH,
                         size_t imgSizeW,
                         Matrix& denoms,
                         size_t channels,
                         size_t sizeX,
                         float scale,
                         float pow);

  void crossMapNormalBwd(Matrix& localGrad,
                         Matrix& denoms,
                         Matrix& preOutV,
                         Matrix& localOutV,
                         size_t channels,
                         size_t imgSizeH,
                         size_t imgSizeW,
                         size_t sizeX,
                         float scale,
                         float pow);

  void maxSequenceForward(Matrix& input,
                          const IVector& sequence,
Z
zhangjinchao01 已提交
1710 1711
                          IVector& index);

1712 1713
  void maxSequenceBackward(Matrix& outputGrad,
                           const IVector& sequence,
Z
zhangjinchao01 已提交
1714 1715
                           IVector& index);

1716 1717 1718 1719 1720 1721
  void contextProjectionForward(MatrixPtr input,
                                MatrixPtr weight,
                                const IVector& sequence,
                                int contextLength,
                                int contextStart,
                                size_t beginPad,
Z
zhangjinchao01 已提交
1722 1723
                                bool isPadding);

1724 1725 1726 1727 1728 1729
  void contextProjectionBackward(MatrixPtr inputGrad,
                                 MatrixPtr weightGrad,
                                 const IVector& sequence,
                                 int contextLength,
                                 int contextStart,
                                 size_t beginPad,
Z
zhangjinchao01 已提交
1730 1731 1732 1733 1734 1735 1736 1737
                                 bool isPadding);

  real* getRow(size_t row) { return BaseMatrix::rowBuf(row); }
  virtual real* getRowBuf(size_t row) { return getRow(row); }

public:
  /// add b to each sample of this.
  void addBias(Matrix& b, real scale);
1738
  void addSharedBias(Matrix& b, real scale);
Z
zhangjinchao01 已提交
1739 1740 1741

  /// add each sample of a to this.
  void collectBias(Matrix& a, real scale);
1742
  void collectSharedBias(Matrix& a, real scale);
Z
zhangjinchao01 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

  void sequenceAvgForward(Matrix& a, const IVector& startsPos, int mode);

  /**
   * @code
   * this.row[i] += table.row[ids[i]]
   * @endcode
   */
  virtual void selectRows(Matrix& table, IVector& ids);

  /**
   * @code
   * table.row[ids[i]] += this.row[i]
   * @endcode
1757
   */
Z
zhangjinchao01 已提交
1758 1759 1760 1761 1762 1763
  virtual void addToRows(Matrix& table, IVector& ids);

  /**
   * @code
   * this[i] = table[i, id[i]]
   * @endcode
1764
   */
Z
zhangjinchao01 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
  virtual void selectElements(Matrix& table, IVector& ids);

  /**
   * @code
   * table[i, id[i]] += this[i]
   * @endcode
   */
  virtual void addElements(Matrix& table, IVector& ids);

  /**
   * use abstract getRow() to get row from table.
   *
   * Define table as template instead of virtual class for performance sake.
   * internal used by above two virtual funcs.
   */
  template <typename TableMatType>
  void selectRowsImp(TableMatType& table, IVector& ids);
  template <typename TableMatType>
  void addToRowsImp(TableMatType& table, IVector& ids);

  void addColumnVector(const Matrix& b);

  void mul(const MatrixPtr a, const MatrixPtr b, real scaleAB, real scaleT);
  void mul(CpuMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);

  void mul(CpuMatrix* a, CpuSparseMatrix* b, real scaleAB, real scaleT);

1792 1793 1794 1795
  static void mul(CpuMatrix* a,
                  CpuMatrix* b,
                  CpuSparseMatrix* c,
                  real scaleAB,
Z
zhangjinchao01 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804
                  real scaleT);

  /**
   * c = a * b
   *
   * use abstract getRow() to get row from B,C.
   * Define B,C as template instead of virtual class for performance sake.
   */
  template <typename MatBType, typename MatCType>
1805 1806
  static void mul(
      CpuSparseMatrix* a, MatBType* b, MatCType* c, real scaleAB, real scaleT);
Z
zhangjinchao01 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

  virtual void mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);

  void mul(const MatrixPtr a, const MatrixPtr b);

  void rightMul(Matrix& b, real scaleAB, real scaleT);
  void rightMul(Matrix& b);

  void leftMul(Matrix& a, real scaleAB, real scaleT);
  void leftMul(Matrix& a);
  void colMerge(Matrix& src);
  void rowSum(Matrix& sum);
  void rowMaxId(IVector& maxIds);
  void rowMax(Matrix& max);
  void rowMax(IVector& maxIds, Matrix& maxVal);
  void colMax(Matrix& max);
1823 1824 1825
  void colMax(IVector& maxIds, Matrix& maxVal);
  void maxoutForward(Matrix& a, IVector& id, size_t channels, size_t groups);
  void maxoutBackward(Matrix& a, IVector& id, size_t channels, size_t groups);
Z
zhangjinchao01 已提交
1826 1827 1828 1829
  void rowNormalizeL1(Matrix& out);

  void oneHotCrossEntropy(Matrix& output, IVector& label);
  void oneHotCrossEntropyBp(Matrix& outputV, IVector& label);
1830 1831
  void oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                      IVector& label,
Z
zhangjinchao01 已提交
1832
                                      real alpha);
1833 1834
  void oneHotCrossEntropyWithSelfNormBp(Matrix& outputV,
                                        IVector& label,
Z
zhangjinchao01 已提交
1835 1836 1837
                                        real alpha);

  void circularConv(Matrix& b, Matrix& c);
1838 1839 1840 1841
  void circularConvDerivative(Matrix& output,
                              Matrix& prevOut1,
                              Matrix& prevOut2,
                              Matrix& prevGrad1,
Z
zhangjinchao01 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
                              Matrix& prevGrad2);

  void softmax(Matrix& output);
  void sequenceSoftmax(Matrix& output, const IVector& index);
  void softmaxDerivative(Matrix& output, Matrix& sftmaxSum);

  /// calculate the sum of squares diff cost.
  void sumOfSquares(Matrix& output, Matrix& label);

  /// gradient of sumOfSquares.
  void sumOfSquaresBp(Matrix& outputV, Matrix& label);

  void tanh(Matrix& output);
  void tanhDerivative(Matrix& output);

  void softrelu(Matrix& output);
  void softreluDerivative(Matrix& output);
  void scaledTanh(Matrix& output, real p1, real p2);

  void cosSim(Matrix& output1, Matrix& output2, real scale);
1862 1863 1864 1865 1866 1867
  void cosSimDerivative(Matrix& output,
                        Matrix& prevOut1,
                        Matrix& prevOut2,
                        Matrix& prevGrad1,
                        Matrix& prevGrad2,
                        real scale);
Z
zhangjinchao01 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

  void print(std::ostream& os) const;
  void print(std::ostream& os, size_t height, size_t width) const;
  void printOneRow(std::ostream& os, size_t idx) const;

  void paramReluForward(Matrix& data, Matrix& W);
  void paramReluBackwardW(Matrix& oGrad, Matrix& data);
  void paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W);

  void check(std::ostream& os, Matrix& refMat, bool printDiff = true);

  real getMin();
  real getMax();

  void randomizeUniform();

  void classificationError(MatrixPtr output, IVectorPtr label);

  void addByBitCode(size_t numClasses, const IVector& codes, const Matrix& vec);

1888 1889
  void addByBitCodeBackward(size_t numClasses,
                            const IVector& codes,
Z
zhangjinchao01 已提交
1890 1891
                            Matrix& vec);

1892 1893 1894
  void mulByBitCode(size_t numClasses,
                    const IVector& codes,
                    const Matrix& mat,
Z
zhangjinchao01 已提交
1895 1896
                    const Matrix& input);

1897 1898 1899 1900
  void mulByBitCodeBackwardWeight(size_t numClasses,
                                  const IVector& codes,
                                  Matrix& mat,
                                  const Matrix& input);
Z
zhangjinchao01 已提交
1901

1902 1903 1904 1905
  void mulByBitCodeBackwardError(size_t numClasses,
                                 const IVector& codes,
                                 const Matrix& mat,
                                 Matrix& input);
Z
zhangjinchao01 已提交
1906

1907 1908 1909
  void sumByBitCode(size_t numClasses,
                    IVector& codes,
                    Matrix& sum,
Z
zhangjinchao01 已提交
1910 1911 1912 1913 1914 1915 1916
                    real scaleSum);

  void subByBitCode(size_t numClasses_, IVector& codes);

  void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label);
  void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label);
  void classificationErrorMulti(Matrix& output, Matrix& label, real threshold);
H
hedaoyuan 已提交
1917

L
liaogang 已提交
1918 1919 1920 1921 1922
  void bilinearForward(const Matrix& in,
                       const size_t inImgH,
                       const size_t inImgW,
                       const size_t outImgH,
                       const size_t outImgW,
L
liaogang 已提交
1923 1924 1925
                       const size_t numChannels,
                       const real ratioH,
                       const real ratioW);
L
liaogang 已提交
1926 1927 1928 1929 1930 1931

  void bilinearBackward(const Matrix& out,
                        const size_t outImgH,
                        const size_t outImgW,
                        const size_t inImgH,
                        const size_t inImgW,
L
liaogang 已提交
1932 1933 1934
                        const size_t numChannels,
                        const real ratioH,
                        const real ratioW);
1935 1936

  template <typename ExpressionType>
H
hedaoyuan 已提交
1937 1938 1939
  void operator=(const ExpressionType& expr) {
    TensorCpuApply<real>(*this, expr);
  }
Z
zhangjinchao01 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948
};

class SharedCpuMatrix : public CpuMatrix {
public:
  /* blockNum is number of partitions of the matrix  */
  SharedCpuMatrix(int blockNum, size_t height, size_t width, bool trans = false)
      : CpuMatrix(height, width, trans) {
    initShared(blockNum);
  }
1949 1950
  SharedCpuMatrix(
      int blockNum, real* data, size_t height, size_t width, bool trans = false)
Z
zhangjinchao01 已提交
1951 1952 1953 1954
      : CpuMatrix(data, height, width, trans) {
    initShared(blockNum);
  }

1955 1956 1957 1958 1959
  SharedCpuMatrix(int blockNum,
                  CpuMemHandlePtr dataHandle,
                  size_t height,
                  size_t width,
                  bool trans = false)
Z
zhangjinchao01 已提交
1960 1961 1962 1963
      : CpuMatrix(dataHandle, height, width, trans) {
    initShared(blockNum);
  }

1964 1965 1966 1967
  SharedCpuMatrix(CpuMemHandlePtr dataHandle,
                  size_t height,
                  size_t width,
                  bool trans = false)
Z
zhangjinchao01 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
      : CpuMatrix(dataHandle, height, width, trans) {
    initBlock(1);
  }

  ~SharedCpuMatrix() {}

public:
  virtual void mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);
  void add(Matrix& b, real p1, real p2);
  void add(real p1, real p2);

private:
H
hedaoyuan 已提交
1980
  using Matrix::mul;
Z
zhangjinchao01 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
  void initShared(int blockNum);
  void initBlock(int blockNum);

  int blockNum_;
  std::vector<std::unique_ptr<std::mutex>> blockLocks_;
  ThreadLocal<CpuMatrixPtr> localBuf_;
  ThreadLocal<std::vector<int>> localBufRows_;
  ThreadLocal<std::vector<int>> blockSeq_;
};

typedef struct { unsigned int col; } sparse_non_value_t;

typedef struct {
  unsigned int col;
  float value;
} sparse_float_value_t;

}  // namespace paddle
#include "ExecViaCpu.h"