README_en.md 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
English | [简体中文](README.md)

# PaddleDetection

The goal of PaddleDetection is to provide easy access to a wide range of object
detection models in both industry and research settings. We design
PaddleDetection to be not only performant, production-ready but also highly
flexible, catering to research needs.

**Now all models in PaddleDetection require PaddlePaddle version 1.6 or higher, or suitable develop version.**

<div align="center">
G
Guanghua Yu 已提交
13
  <img src="docs/images/000000570688.jpg" />
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
</div>


## Introduction

Features:

- Production Ready:

  Key operations are implemented in C++ and CUDA, together with PaddlePaddle's
highly efficient inference engine, enables easy deployment in server environments.

- Highly Flexible:

  Components are designed to be modular. Model architectures, as well as data
preprocess pipelines, can be easily customized with simple configuration
changes.

- Performance Optimized:

  With the help of the underlying PaddlePaddle framework, faster training and
reduced GPU memory footprint is achieved. Notably, YOLOv3 training is
much faster compared to other frameworks. Another example is Mask-RCNN
(ResNet50), we managed to fit up to 4 images per GPU (Tesla V100 16GB) during
multi-GPU training.

Supported Architectures:

42 43 44 45 46 47 48 49 50 51 52
|                     | ResNet | ResNet-vd <sup>[1](#vd)</sup> | ResNeXt-vd | SENet | MobileNet | DarkNet | VGG  | HRNet | Res2Net |
| ------------------- | :----: | ----------------------------: | :--------: | :---: | :-------: | :-----: | :--: | :--:  | :--:    |
| Faster R-CNN        |   ✓    |                             ✓ |     x      |   ✓   |     ✗     |    ✗    |  ✗   |  ✗    |  ✗      |
| Faster R-CNN + FPN  |   ✓    |                             ✓ |     ✓      |   ✓   |     ✗     |    ✗    |  ✗   |  ✓    |  ✓      |
| Mask R-CNN          |   ✓    |                             ✓ |     x      |   ✓   |     ✗     |    ✗    |  ✗   |  ✗    |  ✗      |
| Mask R-CNN + FPN    |   ✓    |                             ✓ |     ✓      |   ✓   |     ✗     |    ✗    |  ✗   |  ✗    |  ✓      |
| Cascade Faster-RCNN |   ✓    |                             ✓ |     ✓      |   ✗   |     ✗     |    ✗    |  ✗   |  ✗    |  ✗      |
| Cascade Mask-RCNN   |   ✓    |                             ✗ |     ✗      |   ✓   |     ✗     |    ✗    |  ✗   |  ✗    |  ✗      |
| RetinaNet           |   ✓    |                             ✗ |     ✗      |   ✗   |     ✗     |    ✗    |  ✗   |  ✗    |  ✗      |
| YOLOv3              |   ✓    |                             ✗ |     ✗      |   ✗   |     ✓     |    ✓    |  ✗   |  ✗    |  ✗      |
| SSD                 |   ✗    |                             ✗ |     ✗      |   ✗   |     ✓     |    ✗    |  ✓   |  ✗    |  ✗      |
53 54 55 56 57 58 59 60 61 62 63 64

<a name="vd">[1]</a> [ResNet-vd](https://arxiv.org/pdf/1812.01187) models offer much improved accuracy with negligible performance cost.

Advanced Features:

- [x] **Synchronized Batch Norm**: currently used by YOLOv3.
- [x] **Group Norm**
- [x] **Modulated Deformable Convolution**
- [x] **Deformable PSRoI Pooling**

**NOTE:** Synchronized batch normalization can only be used on multiple GPU devices, can not be used on CPU devices or single GPU device.

G
Guanghua Yu 已提交
65
## Tutorials
66

G
Guanghua Yu 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79
**News:** Documentation:[https://paddledetection.readthedocs.io](https://paddledetection.readthedocs.io)

### Get Started

- [Installation guide](docs/tutorials/INSTALL.md)
- [Quick start on small dataset](docs/tutorials/QUICK_STARTED.md)
- For detailed training and evaluation workflow, please refer to [GETTING_STARTED](docs/tutorials/GETTING_STARTED.md)

### Advanced Tutorial

- [Guide to preprocess pipeline and custom dataset](docs/advanced_tutorials/READER.md)
- [Models technical](docs/advanced_tutorials/MODEL_TECHNICAL.md)
- [Introduction to the configuration workflow](docs/advanced_tutorials/CONFIG.md)
80
- [IPython Notebook demo](demo/mask_rcnn_demo.ipynb)
G
Guanghua Yu 已提交
81 82 83 84 85 86 87 88 89 90 91
- [Transfer learning document](docs/advanced_tutorials/TRANSFER_LEARNING.md)
- [Model compression](slim)
    - [Quantization-aware training example](slim/quantization)
    - [Model pruning example](slim/prune)
    - [Model distillation example](slim/distillation)
    - [Neural Architecture Search example](slim/nas)
- [Deployment](inference)
    - [Export model for inference](docs/advanced_tutorials/inference/EXPORT_MODEL.md)
    - [Model inference](docs/advanced_tutorials/inference/INFERENCE.md)
    - [C++ inference](inference/README.md)
    - [Inference benchmark](docs/advanced_tutorials/inference/BENCHMARK_INFER_cn.md)
92 93 94 95 96

## Model Zoo

- Pretrained models are available in the [PaddleDetection model zoo](docs/MODEL_ZOO.md).
- [Face detection models](configs/face_detection/README.md)
97
- [Pretrained models for pedestrian  and vehicle detection](contrib/README.md) Models for object detection in specific scenarios.
98 99
- [YOLOv3 enhanced model](docs/YOLOv3_ENHANCEMENT.md) Compared to MAP of 33.0% in paper, enhanced YOLOv3 reaches the MAP of 41.4% and inference speed is improved as well
- [Objects365 2019 Challenge champion model](docs/CACascadeRCNN.md) One of the best single models in Objects365 Full Track of which MAP reaches 31.7%.
100
- [Open Images Dataset V5 and Objects365 Dataset models](docs/OIDV5_BASELINE_MODEL.md)
101 102


G
Guanghua Yu 已提交
103 104
## License
PaddleDetection is released under the [Apache 2.0 license](LICENSE).
105 106

## Updates
G
Guanghua Yu 已提交
107 108
v0.2.0 was released at `01/2020`, add some models,Upgrade data processing module, Split YOLOv3's loss, fix many known bugs, etc.
Please refer to [版本更新文档](docs/CHANGELOG.md) for details.
109 110 111 112

## Contributing

Contributions are highly welcomed and we would really appreciate your feedback!!