README.md 17.0 KB
Newer Older
J
JYChen 已提交
1 2
简体中文 | [English](README_en.md)

Y
YixinKristy 已提交
3 4 5 6 7 8 9
# 关键点检测系列模型

<div align="center">
  <img src="./football_keypoint.gif" width='800'/>
</div>

## 目录
Y
YixinKristy 已提交
10

Y
YixinKristy 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
- [简介](#简介)
- [模型推荐](#模型推荐)
- [模型库](#模型库)
- [快速开始](#快速开始)
  - [环境安装](#1环境安装)
  - [数据准备](#2数据准备)
  - [训练与测试](#3训练与测试)
    - [单卡训练](#单卡训练)
    - [多卡训练](#多卡训练)
    - [模型评估](#模型评估)
    - [模型预测](#模型预测)
    - [模型部署](#模型部署)
      - [Top-Down模型联合部署](#top-down模型联合部署)
      - [Bottom-Up模型独立部署](#bottom-up模型独立部署)
      - [与多目标跟踪联合部署](#与多目标跟踪模型fairmot联合部署预测)
Y
YixinKristy 已提交
26
- [BenchMark](#benchmark)
27 28 29

## 简介

Y
YixinKristy 已提交
30
PaddleDetection 关键点检测能力紧跟业内最新最优算法方案,包含Top-Down、Bottom-Up两套方案,Top-Down先检测主体,再检测局部关键点,优点是精度较高,缺点是速度会随着检测对象的个数增加,Bottom-Up先检测关键点再组合到对应的部位上,优点是速度快,与检测对象个数无关,缺点是精度较低。
31

Y
YixinKristy 已提交
32 33 34 35
同时,PaddleDetection提供针对移动端设备优化的自研实时关键点检测模型[PP-TinyPose](./tiny_pose/README.md),以满足用户的不同需求。

## 模型推荐

Y
YixinKristy 已提交
36
### 移动端模型推荐
Y
YixinKristy 已提交
37

Y
YixinKristy 已提交
38 39 40 41
| 检测模型                                                                                                | 关键点模型                                 | 输入尺寸                      | COCO数据集精度                | 平均推理耗时 (FP16)               | 模型权重                                                                                                                                                                             | Paddle-Lite部署模型(FP16)                                                                                                                                                           |
|:--------------------------------------------------------------------------------------------------- |:------------------------------------- |:-------------------------:|:------------------------:|:---------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [PP-TinyPose](./tinypose_128x96.yml)  | 检测:192x192<br>关键点:128x96  | 检测mAP:29.0<br>关键点AP:58.1 | 检测耗时:2.37ms<br>关键点耗时:3.27ms | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb)  |
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [PP-TinyPose](./tinypose_256x192.yml) | 检测:320x320<br>关键点:256x192 | 检测mAP:38.5<br>关键点AP:68.8 | 检测耗时:6.30ms<br>关键点耗时:8.33ms | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
Z
zhiboniu 已提交
42

Y
YixinKristy 已提交
43
*详细关于PP-TinyPose的使用请参考[文档]((./tiny_pose/README.md))。
44

Y
YixinKristy 已提交
45
### 服务端模型推荐
46

Y
YixinKristy 已提交
47 48 49 50 51 52
| 检测模型                                                                                                                          | 关键点模型                                      | 输入尺寸                      | COCO数据集精度                | 模型权重                                                                                                                                                                    |
|:----------------------------------------------------------------------------------------------------------------------------- |:------------------------------------------ |:-------------------------:|:------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_384x288.yml) | 检测:640x640<br>关键点:384x288 | 检测mAP:49.5<br>关键点AP:77.8 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_256x192.yml) | 检测:640x640<br>关键点:256x192 | 检测mAP:49.5<br>关键点AP:76.9 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) |

## 模型库
Y
YixinKristy 已提交
53

Z
zhiboniu 已提交
54
COCO数据集
Y
YixinKristy 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68
| 模型              |  方案              |输入尺寸 | AP(coco val) |                           模型下载                           | 配置文件 |                                                   
| :---------------- | -------- | :----------: | :----------------------------------------------------------: | ----------------------------------------------------| ------- |
| HigherHRNet-w32       |Bottom-Up| 512      |     67.1     | [higherhrnet_hrnet_w32_512.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_512.yml)       |
| HigherHRNet-w32       | Bottom-Up| 640      |     68.3     | [higherhrnet_hrnet_w32_640.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_640.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_640.yml)       |
| HigherHRNet-w32+SWAHR |Bottom-Up|  512      |     68.9     | [higherhrnet_hrnet_w32_512_swahr.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512_swahr.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml) |
| HRNet-w32             | Top-Down| 256x192  |     76.9     | [hrnet_w32_256x192.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) | [config](./hrnet/hrnet_w32_256x192.yml)                     |
| HRNet-w32             |Top-Down| 384x288  |     77.8     | [hrnet_w32_384x288.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) | [config](./hrnet/hrnet_w32_384x288.yml)                     |
| HRNet-w32+DarkPose             |Top-Down| 256x192  |     78.0     | [dark_hrnet_w32_256x192.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_256x192.pdparams) | [config](./hrnet/dark_hrnet_w32_256x192.yml)                     |
| HRNet-w32+DarkPose             |Top-Down| 384x288  |     78.3     | [dark_hrnet_w32_384x288.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams) | [config](./hrnet/dark_hrnet_w32_384x288.yml)                     |
| WiderNaiveHRNet-18         | Top-Down|256x192  |     67.6(+DARK 68.4)     | [wider_naive_hrnet_18_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/wider_naive_hrnet_18_256x192_coco.pdparams) | [config](./lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml)     |
| LiteHRNet-18                   |Top-Down| 256x192  |     66.5     | [lite_hrnet_18_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_256x192_coco.yml)     |
| LiteHRNet-18                   |Top-Down| 384x288  |     69.7     | [lite_hrnet_18_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_18_384x288_coco.yml)     |
| LiteHRNet-30                   | Top-Down|256x192  |     69.4     | [lite_hrnet_30_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_256x192_coco.yml)     |
| LiteHRNet-30                   |Top-Down| 384x288  |     72.5     | [lite_hrnet_30_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_384x288_coco.yml)     |
69

Z
zhiboniu 已提交
70
备注: Top-Down模型测试AP结果基于GroundTruth标注框
71

Z
zhiboniu 已提交
72
MPII数据集
Y
YixinKristy 已提交
73 74 75
| 模型  | 方案| 输入尺寸 | PCKh(Mean) | PCKh(Mean@0.1) |                           模型下载                           | 配置文件                                     |
| :---- | ---|----- | :--------: | :------------: | :----------------------------------------------------------: | -------------------------------------------- |
| HRNet-w32 | Top-Down|256x256  |    90.6    |      38.5      | [hrnet_w32_256x256_mpii.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x256_mpii.pdparams) | [config](./hrnet/hrnet_w32_256x256_mpii.yml) |
Z
zhiboniu 已提交
76

Y
YixinKristy 已提交
77 78 79 80 81
我们同时推出了基于LiteHRNet(Top-Down)针对移动端设备优化的实时关键点检测模型[PP-TinyPose](./tiny_pose/README.md), 欢迎体验。
| 模型  | 输入尺寸 | AP (COCO Val) | 单人推理耗时 (FP32)| 单人推理耗时(FP16) | 配置文件 | 模型权重 | 预测部署模型 | Paddle-Lite部署模型(FP32) | Paddle-Lite部署模型(FP16)|
| :------------------------ | :-------:  | :------: | :------: |:---: | :---: | :---: | :---: | :---: | :---: |
| PP-TinyPose | 128*96 | 58.1 | 4.57ms | 3.27ms | [Config](./tinypose_128x96.yml) |[Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.tar) | [Lite部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.nb) | [Lite部署模型(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
| PP-TinyPose | 256*192 | 68.8 | 14.07ms | 8.33ms | [Config](./tinypose_256x192.yml) | [Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams) | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.tar) | [Lite部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.nb) | [Lite部署模型(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
J
JYChen 已提交
82

83 84 85 86
## 快速开始

### 1、环境安装

Y
YixinKristy 已提交
87
​    请参考PaddleDetection [安装文档](../../docs/tutorials/INSTALL_cn.md)正确安装PaddlePaddle和PaddleDetection即可。
88 89 90

### 2、数据准备

91 92
​    目前KeyPoint模型支持[COCO](https://cocodataset.org/#keypoints-2017)数据集和[MPII](http://human-pose.mpi-inf.mpg.de/#overview)数据集,数据集的准备方式请参考[关键点数据准备](../../docs/tutorials/PrepareKeypointDataSet_cn.md)

Z
zhiboniu 已提交
93 94
​    关于config配置文件内容说明请参考[关键点配置文件说明](../../docs/tutorials/KeyPointConfigGuide_cn.md)

Y
YixinKristy 已提交
95
- 请注意,Top-Down方案使用检测框测试时,需要通过检测模型生成bbox.json文件。COCO val2017的检测结果可以参考[Detector having human AP of 56.4 on COCO val2017 dataset](https://paddledet.bj.bcebos.com/data/bbox.json),下载后放在根目录(PaddleDetection)下,然后修改config配置文件中`use_gt_bbox: False`后生效。然后正常执行测试命令即可。
96 97 98

### 3、训练与测试

Y
YixinKristy 已提交
99
#### 单卡训练
100 101

```shell
102
#COCO DataSet
103
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
104 105

#MPII DataSet
106
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
107 108
```

Y
YixinKristy 已提交
109
#### 多卡训练
110 111

```shell
112
#COCO DataSet
113
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch tools/train.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
114 115

#MPII DataSet
116
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch tools/train.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
117 118
```

Y
YixinKristy 已提交
119
#### 模型评估
120 121

```shell
122
#COCO DataSet
123
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml
124 125 126

#MPII DataSet
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
127 128 129

#当只需要保存评估预测的结果时,可以通过设置save_prediction_only参数实现,评估预测结果默认保存在output/keypoints_results.json文件中
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml --save_prediction_only
130 131
```

Y
YixinKristy 已提交
132
#### 模型预测
133

Z
zhiboniu 已提交
134 135
​    注意:top-down模型只支持单人截图预测,如需使用多人图,请使用[联合部署推理]方式。或者使用bottom-up模型。

136 137 138 139
```shell
CUDA_VISIBLE_DEVICES=0 python3 tools/infer.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml -o weights=./output/higherhrnet_hrnet_w32_512/model_final.pdparams --infer_dir=../images/ --draw_threshold=0.5 --save_txt=True
```

Y
YixinKristy 已提交
140
#### 模型部署
Y
YixinKristy 已提交
141

Y
YixinKristy 已提交
142
##### Top-Down模型联合部署
Y
YixinKristy 已提交
143

Y
YixinKristy 已提交
144 145 146 147 148 149
```shell
#导出检测模型
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams 

#导出关键点模型
python tools/export_model.py -c configs/keypoint/hrnet/hrnet_w32_256x192.yml -o weights=https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams
150

Y
YixinKristy 已提交
151 152 153
#detector 检测 + keypoint top-down模型联合部署(联合推理只支持top-down方式)
python deploy/python/det_keypoint_unite_infer.py --det_model_dir=output_inference/ppyolo_r50vd_dcn_2x_coco/ --keypoint_model_dir=output_inference/hrnet_w32_384x288/ --video_file=../video/xxx.mp4  --device=gpu
```
Y
YixinKristy 已提交
154

Y
YixinKristy 已提交
155
##### Bottom-Up模型独立部署
Y
YixinKristy 已提交
156

157 158 159 160 161
```shell
#导出模型
python tools/export_model.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml -o weights=output/higherhrnet_hrnet_w32_512/model_final.pdparams

#部署推理
Z
zhiboniu 已提交
162
python deploy/python/keypoint_infer.py --model_dir=output_inference/higherhrnet_hrnet_w32_512/ --image_file=./demo/000000014439_640x640.jpg --device=gpu --threshold=0.5
163
```
Y
YixinKristy 已提交
164

Y
YixinKristy 已提交
165
##### 与多目标跟踪模型FairMOT联合部署预测
166 167 168 169 170 171 172 173

```shell
#导出FairMOT跟踪模型
python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams

#用导出的跟踪和关键点模型Python联合预测
python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inference/fairmot_dla34_30e_1088x608/ --keypoint_model_dir=output_inference/higherhrnet_hrnet_w32_512/ --video_file={your video name}.mp4 --device=GPU
```
Y
YixinKristy 已提交
174

175
**注意:**
Y
YixinKristy 已提交
176
 跟踪模型导出教程请参考[文档](../mot/README.md)
Z
zhiboniu 已提交
177

Y
YixinKristy 已提交
178 179 180
## BenchMark

我们给出了不同运行环境下的测试结果,供您在选用模型时参考。详细数据请见[Keypoint Inference Benchmark](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/KeypointBenchmark.md)
181 182

## 引用
Y
YixinKristy 已提交
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
```
@inproceedings{cheng2020bottom,
  title={HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation},
  author={Bowen Cheng and Bin Xiao and Jingdong Wang and Honghui Shi and Thomas S. Huang and Lei Zhang},
  booktitle={CVPR},
  year={2020}
}

@inproceedings{SunXLW19,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
  booktitle={CVPR},
  year={2019}
}

@article{wang2019deep,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Wang, Jingdong and Sun, Ke and Cheng, Tianheng and Jiang, Borui and Deng, Chaorui and Zhao, Yang and Liu, Dong and Mu, Yadong and Tan, Mingkui and Wang, Xinggang and Liu, Wenyu and Xiao, Bin},
  journal={TPAMI},
  year={2019}
}

@InProceedings{Zhang_2020_CVPR,
    author = {Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
    title = {Distribution-Aware Coordinate Representation for Human Pose Estimation},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2020}
}
213 214 215 216 217 218 219

@inproceedings{Yulitehrnet21,
  title={Lite-HRNet: A Lightweight High-Resolution Network},
  author={Yu, Changqian and Xiao, Bin and Gao, Changxin and Yuan, Lu and Zhang, Lei and Sang, Nong and Wang, Jingdong},
  booktitle={CVPR},
  year={2021}
}
220
```