main.cc 7.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>

#include <iostream>
#include <string>
#include <vector>
#include <sys/types.h>
#include <sys/stat.h>

#ifdef _WIN32
#include <direct.h>
#include <io.h>
#elif LINUX
#include <stdarg.h>
#include <sys/stat.h>
#endif

#include "include/object_detector.h"


DEFINE_string(model_dir, "", "Path of inference model");
DEFINE_string(image_path, "", "Path of input image");
DEFINE_string(video_path, "", "Path of input video");
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
DEFINE_bool(use_camera, false, "Use camera or not");
DEFINE_string(run_mode, "fluid", "Mode of running(fluid/trt_fp32/trt_fp16)");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute");
DEFINE_int32(camera_id, -1, "Device id of camera to predict");
DEFINE_bool(run_benchmark, false, "Whether to predict a image_file repeatedly for benchmark");
DEFINE_double(threshold, 0.5, "Threshold of score.");
DEFINE_string(output_dir, "output", "Directory of output visualization files.");
45 46 47 48
DEFINE_bool(use_dynamic_shape, false, "Trt use dynamic shape or not");
DEFINE_int32(trt_min_shape, 1, "Min shape of TRT DynamicShapeI");
DEFINE_int32(trt_max_shape, 1280, "Max shape of TRT DynamicShapeI");
DEFINE_int32(trt_opt_shape, 640, "Opt shape of TRT DynamicShapeI");
Q
qingqing01 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

static std::string DirName(const std::string &filepath) {
  auto pos = filepath.rfind(OS_PATH_SEP);
  if (pos == std::string::npos) {
    return "";
  }
  return filepath.substr(0, pos);
}

static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}

static void MkDir(const std::string& path) {
  if (PathExists(path)) return;
  int ret = 0;
#ifdef _WIN32
  ret = _mkdir(path.c_str());
#else
  ret = mkdir(path.c_str(), 0755);
#endif  // !_WIN32
  if (ret != 0) {
    std::string path_error(path);
    path_error += " mkdir failed!";
    throw std::runtime_error(path_error);
  }
}

static void MkDirs(const std::string& path) {
  if (path.empty()) return;
  if (PathExists(path)) return;

  MkDirs(DirName(path));
  MkDir(path);
}

void PredictVideo(const std::string& video_path,
                  PaddleDetection::ObjectDetector* det) {
  // Open video
  cv::VideoCapture capture;
  if (FLAGS_camera_id != -1){
    capture.open(FLAGS_camera_id);
  }else{
    capture.open(video_path.c_str());
  }
  if (!capture.isOpened()) {
    printf("can not open video : %s\n", video_path.c_str());
    return;
  }

  // Get Video info : resolution, fps
  int video_width = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_WIDTH));
  int video_height = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_HEIGHT));
  int video_fps = static_cast<int>(capture.get(CV_CAP_PROP_FPS));

  // Create VideoWriter for output
  cv::VideoWriter video_out;
  std::string video_out_path = "output.mp4";
  video_out.open(video_out_path.c_str(),
                 0x00000021,
                 video_fps,
                 cv::Size(video_width, video_height),
                 true);
  if (!video_out.isOpened()) {
    printf("create video writer failed!\n");
    return;
  }

  std::vector<PaddleDetection::ObjectResult> result;
  auto labels = det->GetLabelList();
  auto colormap = PaddleDetection::GenerateColorMap(labels.size());
  // Capture all frames and do inference
  cv::Mat frame;
  int frame_id = 0;
  while (capture.read(frame)) {
    if (frame.empty()) {
      break;
    }
    det->Predict(frame, 0.5, 0, 1, false, &result);
    cv::Mat out_im = PaddleDetection::VisualizeResult(
        frame, result, labels, colormap);
    for (const auto& item : result) {
      printf("In frame id %d, we detect: class=%d confidence=%.2f rect=[%d %d %d %d]\n",
        frame_id,
        item.class_id,
        item.confidence,
        item.rect[0],
        item.rect[1],
        item.rect[2],
        item.rect[3]);
   }   
    video_out.write(out_im);
    frame_id += 1;
  }
  capture.release();
  video_out.release();
}

void PredictImage(const std::string& image_path,
                  const double threshold,
                  const bool run_benchmark,
                  PaddleDetection::ObjectDetector* det,
                  const std::string& output_dir = "output") {
  // Open input image as an opencv cv::Mat object
  cv::Mat im = cv::imread(image_path, 1);
  // Store all detected result
  std::vector<PaddleDetection::ObjectResult> result;
  if (run_benchmark)
  {
    det->Predict(im, threshold, 100, 100, run_benchmark, &result);
  }else
  {
    det->Predict(im, 0.5, 0, 1, run_benchmark, &result);
    for (const auto& item : result) {
      printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
          item.class_id,
          item.confidence,
          item.rect[0],
          item.rect[1],
          item.rect[2],
          item.rect[3]);
    }
    // Visualization result
    auto labels = det->GetLabelList();
    auto colormap = PaddleDetection::GenerateColorMap(labels.size());
    cv::Mat vis_img = PaddleDetection::VisualizeResult(
        im, result, labels, colormap);
    std::vector<int> compression_params;
    compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
    compression_params.push_back(95);
    std::string output_path(output_dir);
    if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
      output_path += OS_PATH_SEP;
    }
    output_path += "output.jpg";
    cv::imwrite(output_path, vis_img, compression_params);
    printf("Visualized output saved as %s\n", output_path.c_str());
  }
}

int main(int argc, char** argv) {
  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
  if (FLAGS_model_dir.empty()
      || (FLAGS_image_path.empty() && FLAGS_video_path.empty())) {
    std::cout << "Usage: ./main --model_dir=/PATH/TO/INFERENCE_MODEL/ "
                << "--image_path=/PATH/TO/INPUT/IMAGE/" << std::endl;
    return -1;
  }
  if (!(FLAGS_run_mode == "fluid" || FLAGS_run_mode == "trt_fp32"
205 206
      || FLAGS_run_mode == "trt_fp16" || FLAGS_run_mode == "trt_int8")) {
    std::cout << "run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or 'trt_int8'.";
Q
qingqing01 已提交
207 208 209
    return -1;
  }
  // Load model and create a object detector
210 211 212 213 214 215
  const std::vector<int> trt_min_shape = {1, FLAGS_trt_min_shape, FLAGS_trt_min_shape};
  const std::vector<int> trt_max_shape = {1, FLAGS_trt_max_shape, FLAGS_trt_max_shape};
  const std::vector<int> trt_opt_shape = {1, FLAGS_trt_opt_shape, FLAGS_trt_opt_shape};
  PaddleDetection::ObjectDetector det(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_run_mode,
                        FLAGS_gpu_id, FLAGS_use_dynamic_shape, FLAGS_trt_min_shape,
                        FLAGS_trt_max_shape, FLAGS_trt_opt_shape);
Q
qingqing01 已提交
216 217 218 219 220 221 222 223 224 225 226
  // Do inference on input video or image
  if (!FLAGS_video_path.empty() || FLAGS_use_camera) {
    PredictVideo(FLAGS_video_path, &det);
  } else if (!FLAGS_image_path.empty()) {
    if (!PathExists(FLAGS_output_dir)) {
      MkDirs(FLAGS_output_dir);
    }
    PredictImage(FLAGS_image_path, FLAGS_threshold, FLAGS_run_benchmark, &det, FLAGS_output_dir);
  }
  return 0;
}