metrics.py 15.7 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import json
import paddle
import numpy as np

from .map_utils import prune_zero_padding, DetectionMAP
from .coco_utils import get_infer_results, cocoapi_eval
27
from .widerface_utils import face_eval_run
K
Kaipeng Deng 已提交
28
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
29 30 31 32

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

33
__all__ = [
34 35 36 37 38 39
    'Metric',
    'COCOMetric',
    'VOCMetric',
    'WiderFaceMetric',
    'get_infer_results',
    'RBoxMetric',
40
    'SNIPERCOCOMetric'
41
]
K
Kaipeng Deng 已提交
42

43 44 45 46 47 48 49 50
COCO_SIGMAS = np.array([
    .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87,
    .89, .89
]) / 10.0
CROWD_SIGMAS = np.array(
    [.79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89, .79,
     .79]) / 10.0

K
Kaipeng Deng 已提交
51 52 53 54 55

class Metric(paddle.metric.Metric):
    def name(self):
        return self.__class__.__name__

56 57 58 59 60 61
    def reset(self):
        pass

    def accumulate(self):
        pass

K
Kaipeng Deng 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
    # paddle.metric.Metric defined :metch:`update`, :meth:`accumulate`
    # :metch:`reset`, in ppdet, we also need following 2 methods:

    # abstract method for logging metric results
    def log(self):
        pass

    # abstract method for getting metric results
    def get_results(self):
        pass


class COCOMetric(Metric):
W
wangxinxin08 已提交
75
    def __init__(self, anno_file, **kwargs):
K
Kaipeng Deng 已提交
76 77 78
        assert os.path.isfile(anno_file), \
                "anno_file {} not a file".format(anno_file)
        self.anno_file = anno_file
K
Kaipeng Deng 已提交
79 80 81
        self.clsid2catid = kwargs.get('clsid2catid', None)
        if self.clsid2catid is None:
            self.clsid2catid, _ = get_categories('COCO', anno_file)
82
        self.classwise = kwargs.get('classwise', False)
S
shangliang Xu 已提交
83
        self.output_eval = kwargs.get('output_eval', None)
W
wangxinxin08 已提交
84 85
        # TODO: bias should be unified
        self.bias = kwargs.get('bias', 0)
86
        self.save_prediction_only = kwargs.get('save_prediction_only', False)
87
        self.iou_type = kwargs.get('IouType', 'bbox')
K
Kaipeng Deng 已提交
88 89 90 91
        self.reset()

    def reset(self):
        # only bbox and mask evaluation support currently
92
        self.results = {'bbox': [], 'mask': [], 'segm': [], 'keypoint': []}
K
Kaipeng Deng 已提交
93 94 95 96 97 98 99 100
        self.eval_results = {}

    def update(self, inputs, outputs):
        outs = {}
        # outputs Tensor -> numpy.ndarray
        for k, v in outputs.items():
            outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v

101 102 103
        im_id = inputs['im_id']
        outs['im_id'] = im_id.numpy() if isinstance(im_id,
                                                    paddle.Tensor) else im_id
K
Kaipeng Deng 已提交
104

W
wangxinxin08 已提交
105 106
        infer_results = get_infer_results(
            outs, self.clsid2catid, bias=self.bias)
K
Kaipeng Deng 已提交
107 108 109 110
        self.results['bbox'] += infer_results[
            'bbox'] if 'bbox' in infer_results else []
        self.results['mask'] += infer_results[
            'mask'] if 'mask' in infer_results else []
G
Guanghua Yu 已提交
111 112
        self.results['segm'] += infer_results[
            'segm'] if 'segm' in infer_results else []
113 114
        self.results['keypoint'] += infer_results[
            'keypoint'] if 'keypoint' in infer_results else []
K
Kaipeng Deng 已提交
115 116 117

    def accumulate(self):
        if len(self.results['bbox']) > 0:
S
shangliang Xu 已提交
118 119 120 121
            output = "bbox.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
K
Kaipeng Deng 已提交
122 123 124
                json.dump(self.results['bbox'], f)
                logger.info('The bbox result is saved to bbox.json.')

125 126 127 128 129 130 131 132 133 134 135
            if self.save_prediction_only:
                logger.info('The bbox result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                bbox_stats = cocoapi_eval(
                    output,
                    'bbox',
                    anno_file=self.anno_file,
                    classwise=self.classwise)
                self.eval_results['bbox'] = bbox_stats
                sys.stdout.flush()
K
Kaipeng Deng 已提交
136 137

        if len(self.results['mask']) > 0:
S
shangliang Xu 已提交
138 139 140 141
            output = "mask.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
K
Kaipeng Deng 已提交
142 143 144
                json.dump(self.results['mask'], f)
                logger.info('The mask result is saved to mask.json.')

145 146 147 148 149 150 151 152 153 154 155
            if self.save_prediction_only:
                logger.info('The mask result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                seg_stats = cocoapi_eval(
                    output,
                    'segm',
                    anno_file=self.anno_file,
                    classwise=self.classwise)
                self.eval_results['mask'] = seg_stats
                sys.stdout.flush()
K
Kaipeng Deng 已提交
156

G
Guanghua Yu 已提交
157
        if len(self.results['segm']) > 0:
S
shangliang Xu 已提交
158 159 160 161
            output = "segm.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
G
Guanghua Yu 已提交
162 163 164
                json.dump(self.results['segm'], f)
                logger.info('The segm result is saved to segm.json.')

165 166 167 168 169 170 171 172 173 174 175
            if self.save_prediction_only:
                logger.info('The segm result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                seg_stats = cocoapi_eval(
                    output,
                    'segm',
                    anno_file=self.anno_file,
                    classwise=self.classwise)
                self.eval_results['mask'] = seg_stats
                sys.stdout.flush()
G
Guanghua Yu 已提交
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        if len(self.results['keypoint']) > 0:
            output = "keypoint.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
                json.dump(self.results['keypoint'], f)
                logger.info('The keypoint result is saved to keypoint.json.')

            if self.save_prediction_only:
                logger.info('The keypoint result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                style = 'keypoints'
                use_area = True
                sigmas = COCO_SIGMAS
                if self.iou_type == 'keypoints_crowd':
                    style = 'keypoints_crowd'
                    use_area = False
                    sigmas = CROWD_SIGMAS
                keypoint_stats = cocoapi_eval(
                    output,
                    style,
                    anno_file=self.anno_file,
                    classwise=self.classwise,
                    sigmas=sigmas,
                    use_area=use_area)
                self.eval_results['keypoint'] = keypoint_stats
                sys.stdout.flush()

K
Kaipeng Deng 已提交
206 207 208 209 210 211 212 213 214
    def log(self):
        pass

    def get_results(self):
        return self.eval_results


class VOCMetric(Metric):
    def __init__(self,
215
                 label_list,
K
Kaipeng Deng 已提交
216 217 218 219
                 class_num=20,
                 overlap_thresh=0.5,
                 map_type='11point',
                 is_bbox_normalized=False,
220 221 222 223 224
                 evaluate_difficult=False,
                 classwise=False):
        assert os.path.isfile(label_list), \
                "label_list {} not a file".format(label_list)
        self.clsid2catid, self.catid2name = get_categories('VOC', label_list)
K
Kaipeng Deng 已提交
225 226 227 228 229 230 231 232 233

        self.overlap_thresh = overlap_thresh
        self.map_type = map_type
        self.evaluate_difficult = evaluate_difficult
        self.detection_map = DetectionMAP(
            class_num=class_num,
            overlap_thresh=overlap_thresh,
            map_type=map_type,
            is_bbox_normalized=is_bbox_normalized,
234 235 236
            evaluate_difficult=evaluate_difficult,
            catid2name=self.catid2name,
            classwise=classwise)
K
Kaipeng Deng 已提交
237 238 239 240 241 242 243

        self.reset()

    def reset(self):
        self.detection_map.reset()

    def update(self, inputs, outputs):
W
wangguanzhong 已提交
244 245 246 247
        bbox_np = outputs['bbox'].numpy()
        bboxes = bbox_np[:, 2:]
        scores = bbox_np[:, 1]
        labels = bbox_np[:, 0]
K
Kaipeng Deng 已提交
248 249 250 251
        bbox_lengths = outputs['bbox_num'].numpy()

        if bboxes.shape == (1, 1) or bboxes is None:
            return
W
wangguanzhong 已提交
252 253 254
        gt_boxes = inputs['gt_bbox']
        gt_labels = inputs['gt_class']
        difficults = inputs['difficult'] if not self.evaluate_difficult \
K
Kaipeng Deng 已提交
255 256 257 258 259 260 261
                            else None

        scale_factor = inputs['scale_factor'].numpy(
        ) if 'scale_factor' in inputs else np.ones(
            (gt_boxes.shape[0], 2)).astype('float32')

        bbox_idx = 0
W
wangguanzhong 已提交
262 263
        for i in range(len(gt_boxes)):
            gt_box = gt_boxes[i].numpy()
K
Kaipeng Deng 已提交
264 265
            h, w = scale_factor[i]
            gt_box = gt_box / np.array([w, h, w, h])
W
wangguanzhong 已提交
266
            gt_label = gt_labels[i].numpy()
K
Kaipeng Deng 已提交
267
            difficult = None if difficults is None \
W
wangguanzhong 已提交
268
                            else difficults[i].numpy()
K
Kaipeng Deng 已提交
269 270
            bbox_num = bbox_lengths[i]
            bbox = bboxes[bbox_idx:bbox_idx + bbox_num]
271 272
            score = scores[bbox_idx:bbox_idx + bbox_num]
            label = labels[bbox_idx:bbox_idx + bbox_num]
K
Kaipeng Deng 已提交
273 274
            gt_box, gt_label, difficult = prune_zero_padding(gt_box, gt_label,
                                                             difficult)
275 276
            self.detection_map.update(bbox, score, label, gt_box, gt_label,
                                      difficult)
K
Kaipeng Deng 已提交
277 278 279 280 281 282 283 284 285 286 287 288
            bbox_idx += bbox_num

    def accumulate(self):
        logger.info("Accumulating evaluatation results...")
        self.detection_map.accumulate()

    def log(self):
        map_stat = 100. * self.detection_map.get_map()
        logger.info("mAP({:.2f}, {}) = {:.2f}%".format(self.overlap_thresh,
                                                       self.map_type, map_stat))

    def get_results(self):
289
        return {'bbox': [self.detection_map.get_map()]}
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307


class WiderFaceMetric(Metric):
    def __init__(self, image_dir, anno_file, multi_scale=True):
        self.image_dir = image_dir
        self.anno_file = anno_file
        self.multi_scale = multi_scale
        self.clsid2catid, self.catid2name = get_categories('widerface')

    def update(self, model):

        face_eval_run(
            model,
            self.image_dir,
            self.anno_file,
            pred_dir='output/pred',
            eval_mode='widerface',
            multi_scale=self.multi_scale)
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398


class RBoxMetric(Metric):
    def __init__(self, anno_file, **kwargs):
        assert os.path.isfile(anno_file), \
                "anno_file {} not a file".format(anno_file)
        assert os.path.exists(anno_file), "anno_file {} not exists".format(
            anno_file)
        self.anno_file = anno_file
        self.gt_anno = json.load(open(self.anno_file))
        cats = self.gt_anno['categories']
        self.clsid2catid = {i: cat['id'] for i, cat in enumerate(cats)}
        self.catid2clsid = {cat['id']: i for i, cat in enumerate(cats)}
        self.catid2name = {cat['id']: cat['name'] for cat in cats}
        self.classwise = kwargs.get('classwise', False)
        self.output_eval = kwargs.get('output_eval', None)
        # TODO: bias should be unified
        self.bias = kwargs.get('bias', 0)
        self.save_prediction_only = kwargs.get('save_prediction_only', False)
        self.iou_type = kwargs.get('IouType', 'bbox')
        self.overlap_thresh = kwargs.get('overlap_thresh', 0.5)
        self.map_type = kwargs.get('map_type', '11point')
        self.evaluate_difficult = kwargs.get('evaluate_difficult', False)
        class_num = len(self.catid2name)
        self.detection_map = DetectionMAP(
            class_num=class_num,
            overlap_thresh=self.overlap_thresh,
            map_type=self.map_type,
            is_bbox_normalized=False,
            evaluate_difficult=self.evaluate_difficult,
            catid2name=self.catid2name,
            classwise=self.classwise)

        self.reset()

    def reset(self):
        self.result_bbox = []
        self.detection_map.reset()

    def update(self, inputs, outputs):
        outs = {}
        # outputs Tensor -> numpy.ndarray
        for k, v in outputs.items():
            outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v

        im_id = inputs['im_id']
        outs['im_id'] = im_id.numpy() if isinstance(im_id,
                                                    paddle.Tensor) else im_id

        infer_results = get_infer_results(
            outs, self.clsid2catid, bias=self.bias)
        self.result_bbox += infer_results[
            'bbox'] if 'bbox' in infer_results else []
        bbox = [b['bbox'] for b in self.result_bbox]
        score = [b['score'] for b in self.result_bbox]
        label = [b['category_id'] for b in self.result_bbox]
        label = [self.catid2clsid[e] for e in label]
        gt_box = [
            e['bbox'] for e in self.gt_anno['annotations']
            if e['image_id'] == outs['im_id']
        ]
        gt_label = [
            e['category_id'] for e in self.gt_anno['annotations']
            if e['image_id'] == outs['im_id']
        ]
        gt_label = [self.catid2clsid[e] for e in gt_label]
        self.detection_map.update(bbox, score, label, gt_box, gt_label)

    def accumulate(self):
        if len(self.result_bbox) > 0:
            output = "bbox.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
                json.dump(self.result_bbox, f)
                logger.info('The bbox result is saved to bbox.json.')

            if self.save_prediction_only:
                logger.info('The bbox result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                logger.info("Accumulating evaluatation results...")
                self.detection_map.accumulate()

    def log(self):
        map_stat = 100. * self.detection_map.get_map()
        logger.info("mAP({:.2f}, {}) = {:.2f}%".format(self.overlap_thresh,
                                                       self.map_type, map_stat))

    def get_results(self):
        return {'bbox': [self.detection_map.get_map()]}
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432


class SNIPERCOCOMetric(COCOMetric):
    def __init__(self, anno_file, **kwargs):
        super(SNIPERCOCOMetric, self).__init__(anno_file, **kwargs)
        self.dataset = kwargs["dataset"]
        self.chip_results = []

    def reset(self):
        # only bbox and mask evaluation support currently
        self.results = {'bbox': [], 'mask': [], 'segm': [], 'keypoint': []}
        self.eval_results = {}
        self.chip_results = []

    def update(self, inputs, outputs):
        outs = {}
        # outputs Tensor -> numpy.ndarray
        for k, v in outputs.items():
            outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v

        im_id = inputs['im_id']
        outs['im_id'] = im_id.numpy() if isinstance(im_id,
                                                    paddle.Tensor) else im_id

        self.chip_results.append(outs)


    def accumulate(self):
        results = self.dataset.anno_cropper.aggregate_chips_detections(self.chip_results)
        for outs in results:
            infer_results = get_infer_results(outs, self.clsid2catid, bias=self.bias)
            self.results['bbox'] += infer_results['bbox'] if 'bbox' in infer_results else []

        super(SNIPERCOCOMetric, self).accumulate()