metrics.py 10.7 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import json
import paddle
import numpy as np

from .map_utils import prune_zero_padding, DetectionMAP
from .coco_utils import get_infer_results, cocoapi_eval
27
from .widerface_utils import face_eval_run
K
Kaipeng Deng 已提交
28
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
29 30 31 32

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

33 34 35
__all__ = [
    'Metric', 'COCOMetric', 'VOCMetric', 'WiderFaceMetric', 'get_infer_results'
]
K
Kaipeng Deng 已提交
36

37 38 39 40 41 42 43 44
COCO_SIGMAS = np.array([
    .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87,
    .89, .89
]) / 10.0
CROWD_SIGMAS = np.array(
    [.79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89, .79,
     .79]) / 10.0

K
Kaipeng Deng 已提交
45 46 47 48 49

class Metric(paddle.metric.Metric):
    def name(self):
        return self.__class__.__name__

50 51 52 53 54 55
    def reset(self):
        pass

    def accumulate(self):
        pass

K
Kaipeng Deng 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68
    # paddle.metric.Metric defined :metch:`update`, :meth:`accumulate`
    # :metch:`reset`, in ppdet, we also need following 2 methods:

    # abstract method for logging metric results
    def log(self):
        pass

    # abstract method for getting metric results
    def get_results(self):
        pass


class COCOMetric(Metric):
W
wangxinxin08 已提交
69
    def __init__(self, anno_file, **kwargs):
K
Kaipeng Deng 已提交
70 71 72
        assert os.path.isfile(anno_file), \
                "anno_file {} not a file".format(anno_file)
        self.anno_file = anno_file
K
Kaipeng Deng 已提交
73 74 75
        self.clsid2catid = kwargs.get('clsid2catid', None)
        if self.clsid2catid is None:
            self.clsid2catid, _ = get_categories('COCO', anno_file)
76
        self.classwise = kwargs.get('classwise', False)
S
shangliang Xu 已提交
77
        self.output_eval = kwargs.get('output_eval', None)
W
wangxinxin08 已提交
78 79
        # TODO: bias should be unified
        self.bias = kwargs.get('bias', 0)
80
        self.save_prediction_only = kwargs.get('save_prediction_only', False)
81
        self.iou_type = kwargs.get('IouType', 'bbox')
K
Kaipeng Deng 已提交
82 83 84 85
        self.reset()

    def reset(self):
        # only bbox and mask evaluation support currently
86
        self.results = {'bbox': [], 'mask': [], 'segm': [], 'keypoint': []}
K
Kaipeng Deng 已提交
87 88 89 90 91 92 93 94
        self.eval_results = {}

    def update(self, inputs, outputs):
        outs = {}
        # outputs Tensor -> numpy.ndarray
        for k, v in outputs.items():
            outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v

95 96 97
        im_id = inputs['im_id']
        outs['im_id'] = im_id.numpy() if isinstance(im_id,
                                                    paddle.Tensor) else im_id
K
Kaipeng Deng 已提交
98

W
wangxinxin08 已提交
99 100
        infer_results = get_infer_results(
            outs, self.clsid2catid, bias=self.bias)
K
Kaipeng Deng 已提交
101 102 103 104
        self.results['bbox'] += infer_results[
            'bbox'] if 'bbox' in infer_results else []
        self.results['mask'] += infer_results[
            'mask'] if 'mask' in infer_results else []
G
Guanghua Yu 已提交
105 106
        self.results['segm'] += infer_results[
            'segm'] if 'segm' in infer_results else []
107 108
        self.results['keypoint'] += infer_results[
            'keypoint'] if 'keypoint' in infer_results else []
K
Kaipeng Deng 已提交
109 110 111

    def accumulate(self):
        if len(self.results['bbox']) > 0:
S
shangliang Xu 已提交
112 113 114 115
            output = "bbox.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
K
Kaipeng Deng 已提交
116 117 118
                json.dump(self.results['bbox'], f)
                logger.info('The bbox result is saved to bbox.json.')

119 120 121 122 123 124 125 126 127 128 129
            if self.save_prediction_only:
                logger.info('The bbox result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                bbox_stats = cocoapi_eval(
                    output,
                    'bbox',
                    anno_file=self.anno_file,
                    classwise=self.classwise)
                self.eval_results['bbox'] = bbox_stats
                sys.stdout.flush()
K
Kaipeng Deng 已提交
130 131

        if len(self.results['mask']) > 0:
S
shangliang Xu 已提交
132 133 134 135
            output = "mask.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
K
Kaipeng Deng 已提交
136 137 138
                json.dump(self.results['mask'], f)
                logger.info('The mask result is saved to mask.json.')

139 140 141 142 143 144 145 146 147 148 149
            if self.save_prediction_only:
                logger.info('The mask result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                seg_stats = cocoapi_eval(
                    output,
                    'segm',
                    anno_file=self.anno_file,
                    classwise=self.classwise)
                self.eval_results['mask'] = seg_stats
                sys.stdout.flush()
K
Kaipeng Deng 已提交
150

G
Guanghua Yu 已提交
151
        if len(self.results['segm']) > 0:
S
shangliang Xu 已提交
152 153 154 155
            output = "segm.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
G
Guanghua Yu 已提交
156 157 158
                json.dump(self.results['segm'], f)
                logger.info('The segm result is saved to segm.json.')

159 160 161 162 163 164 165 166 167 168 169
            if self.save_prediction_only:
                logger.info('The segm result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                seg_stats = cocoapi_eval(
                    output,
                    'segm',
                    anno_file=self.anno_file,
                    classwise=self.classwise)
                self.eval_results['mask'] = seg_stats
                sys.stdout.flush()
G
Guanghua Yu 已提交
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        if len(self.results['keypoint']) > 0:
            output = "keypoint.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
                json.dump(self.results['keypoint'], f)
                logger.info('The keypoint result is saved to keypoint.json.')

            if self.save_prediction_only:
                logger.info('The keypoint result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                style = 'keypoints'
                use_area = True
                sigmas = COCO_SIGMAS
                if self.iou_type == 'keypoints_crowd':
                    style = 'keypoints_crowd'
                    use_area = False
                    sigmas = CROWD_SIGMAS
                keypoint_stats = cocoapi_eval(
                    output,
                    style,
                    anno_file=self.anno_file,
                    classwise=self.classwise,
                    sigmas=sigmas,
                    use_area=use_area)
                self.eval_results['keypoint'] = keypoint_stats
                sys.stdout.flush()

K
Kaipeng Deng 已提交
200 201 202 203 204 205 206 207 208
    def log(self):
        pass

    def get_results(self):
        return self.eval_results


class VOCMetric(Metric):
    def __init__(self,
209
                 label_list,
K
Kaipeng Deng 已提交
210 211 212 213
                 class_num=20,
                 overlap_thresh=0.5,
                 map_type='11point',
                 is_bbox_normalized=False,
214 215 216 217 218
                 evaluate_difficult=False,
                 classwise=False):
        assert os.path.isfile(label_list), \
                "label_list {} not a file".format(label_list)
        self.clsid2catid, self.catid2name = get_categories('VOC', label_list)
K
Kaipeng Deng 已提交
219 220 221 222 223 224 225 226 227

        self.overlap_thresh = overlap_thresh
        self.map_type = map_type
        self.evaluate_difficult = evaluate_difficult
        self.detection_map = DetectionMAP(
            class_num=class_num,
            overlap_thresh=overlap_thresh,
            map_type=map_type,
            is_bbox_normalized=is_bbox_normalized,
228 229 230
            evaluate_difficult=evaluate_difficult,
            catid2name=self.catid2name,
            classwise=classwise)
K
Kaipeng Deng 已提交
231 232 233 234 235 236 237

        self.reset()

    def reset(self):
        self.detection_map.reset()

    def update(self, inputs, outputs):
W
wangguanzhong 已提交
238 239 240 241
        bbox_np = outputs['bbox'].numpy()
        bboxes = bbox_np[:, 2:]
        scores = bbox_np[:, 1]
        labels = bbox_np[:, 0]
K
Kaipeng Deng 已提交
242 243 244 245
        bbox_lengths = outputs['bbox_num'].numpy()

        if bboxes.shape == (1, 1) or bboxes is None:
            return
W
wangguanzhong 已提交
246 247 248
        gt_boxes = inputs['gt_bbox']
        gt_labels = inputs['gt_class']
        difficults = inputs['difficult'] if not self.evaluate_difficult \
K
Kaipeng Deng 已提交
249 250 251 252 253 254 255
                            else None

        scale_factor = inputs['scale_factor'].numpy(
        ) if 'scale_factor' in inputs else np.ones(
            (gt_boxes.shape[0], 2)).astype('float32')

        bbox_idx = 0
W
wangguanzhong 已提交
256 257
        for i in range(len(gt_boxes)):
            gt_box = gt_boxes[i].numpy()
K
Kaipeng Deng 已提交
258 259
            h, w = scale_factor[i]
            gt_box = gt_box / np.array([w, h, w, h])
W
wangguanzhong 已提交
260
            gt_label = gt_labels[i].numpy()
K
Kaipeng Deng 已提交
261
            difficult = None if difficults is None \
W
wangguanzhong 已提交
262
                            else difficults[i].numpy()
K
Kaipeng Deng 已提交
263 264
            bbox_num = bbox_lengths[i]
            bbox = bboxes[bbox_idx:bbox_idx + bbox_num]
265 266
            score = scores[bbox_idx:bbox_idx + bbox_num]
            label = labels[bbox_idx:bbox_idx + bbox_num]
K
Kaipeng Deng 已提交
267 268
            gt_box, gt_label, difficult = prune_zero_padding(gt_box, gt_label,
                                                             difficult)
269 270
            self.detection_map.update(bbox, score, label, gt_box, gt_label,
                                      difficult)
K
Kaipeng Deng 已提交
271 272 273 274 275 276 277 278 279 280 281 282
            bbox_idx += bbox_num

    def accumulate(self):
        logger.info("Accumulating evaluatation results...")
        self.detection_map.accumulate()

    def log(self):
        map_stat = 100. * self.detection_map.get_map()
        logger.info("mAP({:.2f}, {}) = {:.2f}%".format(self.overlap_thresh,
                                                       self.map_type, map_stat))

    def get_results(self):
283
        return {'bbox': [self.detection_map.get_map()]}
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301


class WiderFaceMetric(Metric):
    def __init__(self, image_dir, anno_file, multi_scale=True):
        self.image_dir = image_dir
        self.anno_file = anno_file
        self.multi_scale = multi_scale
        self.clsid2catid, self.catid2name = get_categories('widerface')

    def update(self, model):

        face_eval_run(
            model,
            self.image_dir,
            self.anno_file,
            pred_dir='output/pred',
            eval_mode='widerface',
            multi_scale=self.multi_scale)