bipartite_match_op.cc 7.8 KB
Newer Older
D
dangqingqing 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class BipartiteMatchOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
29 30
    PADDLE_ENFORCE(ctx->HasInput("DistMat"),
                   "Input(DistMat) of BipartiteMatch should not be null.");
D
dangqingqing 已提交
31 32 33 34 35 36
    PADDLE_ENFORCE(
        ctx->HasOutput("ColToRowMatchIndices"),
        "Output(ColToRowMatchIndices) of BipartiteMatch should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("ColToRowMatchDist"),
        "Output(ColToRowMatchDist) of BipartiteMatch should not be null.");
37

D
dangqingqing 已提交
38 39
    auto dims = ctx->GetInputDim("DistMat");
    PADDLE_ENFORCE_EQ(dims.size(), 2, "The rank of Input(DistMat) must be 2.");
40 41

    ctx->SetOutputDim("ColToRowMatchIndices", dims);
D
dangqingqing 已提交
42
    ctx->SetOutputDim("ColToRowMatchDist", dims);
43 44 45 46 47 48 49
  }
};

template <typename T>
class BipartiteMatchKernel : public framework::OpKernel<T> {
 public:
  // The match_indices must be initialized to -1 at first.
50 51 52
  // The match_dist must be initialized to 0 at first.
  void BipartiteMatch(const Tensor& dist, int* match_indices,
                      T* match_dist) const {
53
    constexpr T kEPS = static_cast<T>(1e-6);
54 55 56 57
    PADDLE_ENFORCE_EQ(dist.dims().size(), 2, "The rank of dist must be 2.");
    int64_t row = dist.dims()[0];
    int64_t col = dist.dims()[1];
    auto* dist_data = dist.data<T>();
58 59 60 61 62 63 64
    std::vector<int> row_pool;
    for (int i = 0; i < row; ++i) {
      row_pool.push_back(i);
    }
    while (row_pool.size() > 0) {
      int max_idx = -1;
      int max_row_idx = -1;
65
      T max_dist = -1;
66 67 68 69
      for (int64_t j = 0; j < col; ++j) {
        if (match_indices[j] != -1) {
          continue;
        }
D
dangqingqing 已提交
70
        for (size_t k = 0; k < row_pool.size(); ++k) {
71 72
          int m = row_pool[k];
          // distance is 0 between m-th row and j-th column
73
          if (dist_data[m * col + j] < kEPS) {
74 75
            continue;
          }
76
          if (dist_data[m * col + j] > max_dist) {
77 78
            max_idx = j;
            max_row_idx = m;
79
            max_dist = dist_data[m * col + j];
80 81 82 83 84 85 86 87 88
          }
        }
      }
      if (max_idx == -1) {
        // Cannot find good match.
        break;
      } else {
        PADDLE_ENFORCE_EQ(match_indices[max_idx], -1);
        match_indices[max_idx] = max_row_idx;
89
        match_dist[max_idx] = max_dist;
90 91 92 93 94 95 96 97
        // Erase the row index.
        row_pool.erase(
            std::find(row_pool.begin(), row_pool.end(), max_row_idx));
      }
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
D
dangqingqing 已提交
98
    auto* dist_mat = context.Input<LoDTensor>("DistMat");
99
    auto* match_indices = context.Output<Tensor>("ColToRowMatchIndices");
D
dangqingqing 已提交
100
    auto* match_dist = context.Output<Tensor>("ColToRowMatchDist");
101 102 103

    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

104
    auto col = dist_mat->dims()[1];
105

106
    int64_t n = dist_mat->lod().size() == 0UL
107
                    ? 1
108 109 110 111 112
                    : static_cast<int64_t>(dist_mat->lod().back().size() - 1);
    if (dist_mat->lod().size()) {
      PADDLE_ENFORCE_EQ(dist_mat->lod().size(), 1UL,
                        "Only support 1 level of LoD.");
    }
113
    match_indices->mutable_data<int>({n, col}, context.GetPlace());
114
    match_dist->mutable_data<T>({n, col}, context.GetPlace());
115 116 117 118

    math::SetConstant<platform::CPUDeviceContext, int> iset;
    iset(dev_ctx, match_indices, static_cast<int>(-1));
    math::SetConstant<platform::CPUDeviceContext, T> tset;
119
    tset(dev_ctx, match_dist, static_cast<T>(0));
120 121

    int* indices = match_indices->data<int>();
122
    T* dist = match_dist->data<T>();
123
    if (n == 1) {
124
      BipartiteMatch(*dist_mat, indices, dist);
125
    } else {
126
      auto lod = dist_mat->lod().back();
127
      for (size_t i = 0; i < lod.size() - 1; ++i) {
128 129
        Tensor one_ins = dist_mat->Slice(lod[i], lod[i + 1]);
        BipartiteMatch(one_ins, indices + i * col, dist + i * col);
130 131 132 133 134 135 136 137 138 139
      }
    }
  }
};

class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  BipartiteMatchOpMaker(OpProto* proto, OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
D
dangqingqing 已提交
140
        "DistMat",
141 142 143 144
        "(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
        "[K, M]. It is pair-wise distance matrix between the entities "
        "represented by each row and each column. For example, assumed one "
        "entity is A with shape [K], another entity is B with shape [M]. The "
D
dangqingqing 已提交
145
        "DistMat[i][j] is the distance between A[i] and B[j]. The bigger "
146
        "the distance is, the better macthing the pairs are. Please note, "
147 148 149 150 151 152 153 154
        "This tensor can contain LoD information to represent a batch of "
        "inputs. One instance of this batch can contain different numbers of "
        "entities.");
    AddOutput("ColToRowMatchIndices",
              "(Tensor) A 2-D Tensor with shape [N, M] in int type. "
              "N is the batch size. If ColToRowMatchIndices[i][j] is -1, it "
              "means B[j] does not match any entity in i-th instance. "
              "Otherwise, it means B[j] is matched to row "
155 156
              "ColToRowMatchIndices[i][j] in i-th instance. The row number of "
              "i-th instance is saved in ColToRowMatchIndices[i][j].");
D
dangqingqing 已提交
157
    AddOutput("ColToRowMatchDist",
158 159
              "(Tensor) A 2-D Tensor with shape [N, M] in float type. "
              "N is batch size. If ColToRowMatchIndices[i][j] is -1, "
D
dangqingqing 已提交
160
              "ColToRowMatchDist[i][j] is also -1.0. Otherwise, assumed "
161
              "ColToRowMatchIndices[i][j] = d, and the row offsets of each "
162
              "instance are called LoD. Then "
D
dangqingqing 已提交
163
              "ColToRowMatchDist[i][j] = DistMat[d+LoD[i]][j]");
164 165
    AddComment(R"DOC(
This operator is a greedy bipartite matching algorithm, which is used to
166 167 168 169 170 171 172 173
obtain the matching with the maximum distance based on the input
distance matrix. For input 2D matrix, the bipartite matching algorithm can
find the matched column for each row, also can find the matched row for
each column. And this operator only calculate matched indices from column
to row. For each instance, the number of matched indices is the number of
of columns of the input ditance matrix.

There are two outputs to save matched indices and distance.
174 175 176 177 178
A simple description, this algothrim matched the best (maximum distance)
row entity to the column entity and the matched indices are not duplicated
in each row of ColToRowMatchIndices. If the column entity is not matched
any row entity, set -1 in ColToRowMatchIndices.

D
dangqingqing 已提交
179
Please note that the input DistMat can be LoDTensor (with LoD) or Tensor.
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
If Tensor, the height of ColToRowMatchIndices is 1.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(bipartite_match, ops::BipartiteMatchOp,
                  ops::BipartiteMatchOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(bipartite_match, ops::BipartiteMatchKernel<float>,
                       ops::BipartiteMatchKernel<double>);