Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
07908686
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
07908686
编写于
1月 22, 2018
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update some comments and add more check.
上级
c2edcde1
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
42 addition
and
30 deletion
+42
-30
paddle/operators/bipartite_match_op.cc
paddle/operators/bipartite_match_op.cc
+42
-30
未找到文件。
paddle/operators/bipartite_match_op.cc
浏览文件 @
07908686
...
...
@@ -21,6 +21,8 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
constexpr
char
kEPS
=
1e-6
;
class
BipartiteMatchOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -41,12 +43,13 @@ template <typename T>
class
BipartiteMatchKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
// The match_indices must be initialized to -1 at first.
// The match_dis must be initialized to 0 at first.
void
BipartiteMatch
(
const
Tensor
&
dis
,
int
*
match_indices
,
T
*
match_dis
)
const
{
int64_t
row
=
dis
.
dims
()[
0
];
int64_t
col
=
dis
.
dims
()[
1
];
auto
*
dis_data
=
dis
.
data
<
T
>
();
// The match_dist must be initialized to 0 at first.
void
BipartiteMatch
(
const
Tensor
&
dist
,
int
*
match_indices
,
T
*
match_dist
)
const
{
PADDLE_ENFORCE_EQ
(
dist
.
dims
().
size
(),
2
,
"The rank of dist must be 2."
);
int64_t
row
=
dist
.
dims
()[
0
];
int64_t
col
=
dist
.
dims
()[
1
];
auto
*
dist_data
=
dist
.
data
<
T
>
();
std
::
vector
<
int
>
row_pool
;
for
(
int
i
=
0
;
i
<
row
;
++
i
)
{
row_pool
.
push_back
(
i
);
...
...
@@ -54,7 +57,7 @@ class BipartiteMatchKernel : public framework::OpKernel<T> {
while
(
row_pool
.
size
()
>
0
)
{
int
max_idx
=
-
1
;
int
max_row_idx
=
-
1
;
T
max_dis
=
-
1
;
T
max_dis
t
=
-
1
;
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
if
(
match_indices
[
j
]
!=
-
1
)
{
continue
;
...
...
@@ -62,13 +65,13 @@ class BipartiteMatchKernel : public framework::OpKernel<T> {
for
(
int
k
=
0
;
k
<
row_pool
.
size
();
++
k
)
{
int
m
=
row_pool
[
k
];
// distance is 0 between m-th row and j-th column
if
(
dis
_data
[
m
*
col
+
j
]
<
1e-6
)
{
if
(
dis
t_data
[
m
*
col
+
j
]
<
kEPS
)
{
continue
;
}
if
(
dis
_data
[
m
*
col
+
j
]
>
max_dis
)
{
if
(
dis
t_data
[
m
*
col
+
j
]
>
max_dist
)
{
max_idx
=
j
;
max_row_idx
=
m
;
max_dis
=
dis
_data
[
m
*
col
+
j
];
max_dis
t
=
dist
_data
[
m
*
col
+
j
];
}
}
}
...
...
@@ -78,7 +81,7 @@ class BipartiteMatchKernel : public framework::OpKernel<T> {
}
else
{
PADDLE_ENFORCE_EQ
(
match_indices
[
max_idx
],
-
1
);
match_indices
[
max_idx
]
=
max_row_idx
;
match_dis
[
max_idx
]
=
max_dis
;
match_dis
t
[
max_idx
]
=
max_dist
;
// Erase the row index.
row_pool
.
erase
(
std
::
find
(
row_pool
.
begin
(),
row_pool
.
end
(),
max_row_idx
));
...
...
@@ -87,34 +90,38 @@ class BipartiteMatchKernel : public framework::OpKernel<T> {
}
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
dis_mat
=
context
.
Input
<
LoDTensor
>
(
"DisMat"
);
auto
*
dis
t
_mat
=
context
.
Input
<
LoDTensor
>
(
"DisMat"
);
auto
*
match_indices
=
context
.
Output
<
Tensor
>
(
"ColToRowMatchIndices"
);
auto
*
match_dis
=
context
.
Output
<
Tensor
>
(
"ColToRowMatchDis"
);
auto
*
match_dis
t
=
context
.
Output
<
Tensor
>
(
"ColToRowMatchDis"
);
auto
&
dev_ctx
=
context
.
device_context
<
platform
::
CPUDeviceContext
>
();
auto
col
=
dis_mat
->
dims
()[
1
];
auto
col
=
dis
t
_mat
->
dims
()[
1
];
int64_t
n
=
dis
_mat
->
lod
().
size
()
==
0
int64_t
n
=
dis
t_mat
->
lod
().
size
()
==
0UL
?
1
:
static_cast
<
int64_t
>
(
dis_mat
->
lod
().
back
().
size
()
-
1
);
:
static_cast
<
int64_t
>
(
dist_mat
->
lod
().
back
().
size
()
-
1
);
if
(
dist_mat
->
lod
().
size
())
{
PADDLE_ENFORCE_EQ
(
dist_mat
->
lod
().
size
(),
1UL
,
"Only support 1 level of LoD."
);
}
match_indices
->
mutable_data
<
int
>
({
n
,
col
},
context
.
GetPlace
());
match_dis
->
mutable_data
<
T
>
({
n
,
col
},
context
.
GetPlace
());
match_dis
t
->
mutable_data
<
T
>
({
n
,
col
},
context
.
GetPlace
());
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
int
>
iset
;
iset
(
dev_ctx
,
match_indices
,
static_cast
<
int
>
(
-
1
));
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
tset
;
tset
(
dev_ctx
,
match_dis
,
static_cast
<
T
>
(
0
));
tset
(
dev_ctx
,
match_dis
t
,
static_cast
<
T
>
(
0
));
int
*
indices
=
match_indices
->
data
<
int
>
();
T
*
dis
=
match_dis
->
data
<
T
>
();
T
*
dis
t
=
match_dist
->
data
<
T
>
();
if
(
n
==
1
)
{
BipartiteMatch
(
*
dis
_mat
,
indices
,
dis
);
BipartiteMatch
(
*
dis
t_mat
,
indices
,
dist
);
}
else
{
auto
lod
=
dis_mat
->
lod
().
back
();
auto
lod
=
dis
t
_mat
->
lod
().
back
();
for
(
size_t
i
=
0
;
i
<
lod
.
size
()
-
1
;
++
i
)
{
Tensor
one_ins
=
dis_mat
->
Slice
(
lod
[
i
],
lod
[
i
+
1
]);
BipartiteMatch
(
one_ins
,
indices
+
i
*
col
,
dis
+
i
*
col
);
Tensor
one_ins
=
dis
t
_mat
->
Slice
(
lod
[
i
],
lod
[
i
+
1
]);
BipartiteMatch
(
one_ins
,
indices
+
i
*
col
,
dis
t
+
i
*
col
);
}
}
}
...
...
@@ -131,7 +138,7 @@ class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker {
"represented by each row and each column. For example, assumed one "
"entity is A with shape [K], another entity is B with shape [M]. The "
"DisMat[i][j] is the distance between A[i] and B[j]. The bigger "
"the distance is, the
more similar
the pairs are. Please note, "
"the distance is, the
better macthing
the pairs are. Please note, "
"This tensor can contain LoD information to represent a batch of "
"inputs. One instance of this batch can contain different numbers of "
"entities."
);
...
...
@@ -140,20 +147,25 @@ class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker {
"N is the batch size. If ColToRowMatchIndices[i][j] is -1, it "
"means B[j] does not match any entity in i-th instance. "
"Otherwise, it means B[j] is matched to row "
"
RowToCol
MatchIndices[i][j] in i-th instance. The row number of "
"i-th instance is saved in
RowToCol
MatchIndices[i][j]."
);
"
ColToRow
MatchIndices[i][j] in i-th instance. The row number of "
"i-th instance is saved in
ColToRow
MatchIndices[i][j]."
);
AddOutput
(
"ColToRowMatchDis"
,
"(Tensor) A 2-D Tensor with shape [N, M] in float type. "
"N is batch size. If ColToRowMatchIndices[i][j] is -1, "
"ColToRowMatchDis[i][j] is also -1.0. Otherwise, assumed "
"
RowToCol
MatchIndices[i][j] = d, and the row offsets of each "
"
ColToRow
MatchIndices[i][j] = d, and the row offsets of each "
"instance are called LoD. Then "
"ColToRowMatchDis[i][j] = DisMat[d+LoD[i]][j]"
);
AddComment
(
R"DOC(
This operator is a greedy bipartite matching algorithm, which is used to
obtain the matching with the (greedy) maximum distance based on the input
distance matrix. There are two outputs to save matched indices and distance.
And this operator only calculate matched indices from column to row.
obtain the matching with the maximum distance based on the input
distance matrix. For input 2D matrix, the bipartite matching algorithm can
find the matched column for each row, also can find the matched row for
each column. And this operator only calculate matched indices from column
to row. For each instance, the number of matched indices is the number of
of columns of the input ditance matrix.
There are two outputs to save matched indices and distance.
A simple description, this algothrim matched the best (maximum distance)
row entity to the column entity and the matched indices are not duplicated
in each row of ColToRowMatchIndices. If the column entity is not matched
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录