visualize.py 12.7 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# coding: utf-8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

18
import os
Q
qingqing01 已提交
19 20
import cv2
import numpy as np
F
Feng Ni 已提交
21 22
from PIL import Image, ImageDraw, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
23
import math
Q
qingqing01 已提交
24 25


G
Guanghua Yu 已提交
26
def visualize_box_mask(im, results, labels, threshold=0.5):
Q
qingqing01 已提交
27 28 29 30 31 32
    """
    Args:
        im (str/np.ndarray): path of image/np.ndarray read by cv2
        results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                        matix element:[class, score, x_min, y_min, x_max, y_max]
                        MaskRCNN's results include 'masks': np.ndarray:
G
Guanghua Yu 已提交
33
                        shape:[N, im_h, im_w]
Q
qingqing01 已提交
34 35 36 37 38 39 40
        labels (list): labels:['class1', ..., 'classn']
        threshold (float): Threshold of score.
    Returns:
        im (PIL.Image.Image): visualized image
    """
    if isinstance(im, str):
        im = Image.open(im).convert('RGB')
41
    elif isinstance(im, np.ndarray):
Q
qingqing01 已提交
42
        im = Image.fromarray(im)
43
    if 'masks' in results and 'boxes' in results and len(results['boxes']) > 0:
Q
qingqing01 已提交
44
        im = draw_mask(
G
Guanghua Yu 已提交
45
            im, results['boxes'], results['masks'], labels, threshold=threshold)
46
    if 'boxes' in results and len(results['boxes']) > 0:
G
Guanghua Yu 已提交
47
        im = draw_box(im, results['boxes'], labels, threshold=threshold)
Q
qingqing01 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    if 'segm' in results:
        im = draw_segm(
            im,
            results['segm'],
            results['label'],
            results['score'],
            labels,
            threshold=threshold)
    return im


def get_color_map_list(num_classes):
    """
    Args:
        num_classes (int): number of class
    Returns:
        color_map (list): RGB color list
    """
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    return color_map


G
Guanghua Yu 已提交
80
def draw_mask(im, np_boxes, np_masks, labels, threshold=0.5):
Q
qingqing01 已提交
81 82 83 84
    """
    Args:
        im (PIL.Image.Image): PIL image
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
G
Guanghua Yu 已提交
85 86
            matix element:[class, score, x_min, y_min, x_max, y_max]
        np_masks (np.ndarray): shape:[N, im_h, im_w]
Q
qingqing01 已提交
87 88 89 90 91 92 93 94 95 96
        labels (list): labels:['class1', ..., 'classn']
        threshold (float): threshold of mask
    Returns:
        im (PIL.Image.Image): visualized image
    """
    color_list = get_color_map_list(len(labels))
    w_ratio = 0.4
    alpha = 0.7
    im = np.array(im).astype('float32')
    clsid2color = {}
G
Guanghua Yu 已提交
97 98 99 100 101 102
    expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
    np_boxes = np_boxes[expect_boxes, :]
    np_masks = np_masks[expect_boxes, :, :]
    for i in range(len(np_masks)):
        clsid, score = int(np_boxes[i][0]), np_boxes[i][1]
        mask = np_masks[i]
Q
qingqing01 已提交
103 104 105 106 107
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color_mask = clsid2color[clsid]
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
G
Guanghua Yu 已提交
108
        idx = np.nonzero(mask)
Q
qingqing01 已提交
109 110 111 112 113 114
        color_mask = np.array(color_mask)
        im[idx[0], idx[1], :] *= 1.0 - alpha
        im[idx[0], idx[1], :] += alpha * color_mask
    return Image.fromarray(im.astype('uint8'))


G
Guanghua Yu 已提交
115
def draw_box(im, np_boxes, labels, threshold=0.5):
Q
qingqing01 已提交
116 117 118 119 120 121
    """
    Args:
        im (PIL.Image.Image): PIL image
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
                               matix element:[class, score, x_min, y_min, x_max, y_max]
        labels (list): labels:['class1', ..., 'classn']
G
Guanghua Yu 已提交
122
        threshold (float): threshold of box
Q
qingqing01 已提交
123 124 125 126 127 128 129
    Returns:
        im (PIL.Image.Image): visualized image
    """
    draw_thickness = min(im.size) // 320
    draw = ImageDraw.Draw(im)
    clsid2color = {}
    color_list = get_color_map_list(len(labels))
G
Guanghua Yu 已提交
130 131
    expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
    np_boxes = np_boxes[expect_boxes, :]
Q
qingqing01 已提交
132 133 134 135 136 137 138

    for dt in np_boxes:
        clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color = tuple(clsid2color[clsid])

C
cnn 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        if len(bbox) == 4:
            xmin, ymin, xmax, ymax = bbox
            print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],'
                  'right_bottom:[{:.2f},{:.2f}]'.format(
                      int(clsid), score, xmin, ymin, xmax, ymax))
            # draw bbox
            draw.line(
                [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                 (xmin, ymin)],
                width=draw_thickness,
                fill=color)
        elif len(bbox) == 8:
            x1, y1, x2, y2, x3, y3, x4, y4 = bbox
            draw.line(
                [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
                width=2,
                fill=color)
            xmin = min(x1, x2, x3, x4)
            ymin = min(y1, y2, y3, y4)
Q
qingqing01 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

        # draw label
        text = "{} {:.4f}".format(labels[clsid], score)
        tw, th = draw.textsize(text)
        draw.rectangle(
            [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
        draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
    return im


def draw_segm(im,
              np_segms,
              np_label,
              np_score,
              labels,
              threshold=0.5,
              alpha=0.7):
    """
    Draw segmentation on image
    """
    mask_color_id = 0
    w_ratio = .4
    color_list = get_color_map_list(len(labels))
    im = np.array(im).astype('float32')
    clsid2color = {}
    np_segms = np_segms.astype(np.uint8)
    for i in range(np_segms.shape[0]):
G
Guanghua Yu 已提交
185
        mask, score, clsid = np_segms[i], np_score[i], np_label[i]
Q
qingqing01 已提交
186 187 188 189 190 191 192 193 194 195
        if score < threshold:
            continue

        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color_mask = clsid2color[clsid]
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
        idx = np.nonzero(mask)
        color_mask = np.array(color_mask)
C
cnn 已提交
196 197 198 199
        idx0 = np.minimum(idx[0], im.shape[0] - 1)
        idx1 = np.minimum(idx[1], im.shape[1] - 1)
        im[idx0, idx1, :] *= 1.0 - alpha
        im[idx0, idx1, :] += alpha * color_mask
Q
qingqing01 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        sum_x = np.sum(mask, axis=0)
        x = np.where(sum_x > 0.5)[0]
        sum_y = np.sum(mask, axis=1)
        y = np.where(sum_y > 0.5)[0]
        x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
        cv2.rectangle(im, (x0, y0), (x1, y1),
                      tuple(color_mask.astype('int32').tolist()), 1)
        bbox_text = '%s %.2f' % (labels[clsid], score)
        t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
        cv2.rectangle(im, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3),
                      tuple(color_mask.astype('int32').tolist()), -1)
        cv2.putText(
            im,
            bbox_text, (x0, y0 - 2),
            cv2.FONT_HERSHEY_SIMPLEX,
            0.3, (0, 0, 0),
            1,
            lineType=cv2.LINE_AA)
    return Image.fromarray(im.astype('uint8'))
219 220 221 222 223 224 225 226


def get_color(idx):
    idx = idx * 3
    color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255)
    return color


W
wangguanzhong 已提交
227 228 229 230 231 232 233
def visualize_pose(imgfile,
                   results,
                   visual_thresh=0.6,
                   save_name='pose.jpg',
                   save_dir='output',
                   returnimg=False,
                   ids=None):
234 235 236 237 238 239 240 241 242
    try:
        import matplotlib.pyplot as plt
        import matplotlib
        plt.switch_backend('agg')
    except Exception as e:
        logger.error('Matplotlib not found, please install matplotlib.'
                     'for example: `pip install matplotlib`.')
        raise e
    skeletons, scores = results['keypoint']
243
    skeletons = np.array(skeletons)
Z
zhiboniu 已提交
244 245 246
    kpt_nums = 17
    if len(skeletons) > 0:
        kpt_nums = skeletons.shape[1]
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    if kpt_nums == 17:  #plot coco keypoint
        EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8),
                 (7, 9), (8, 10), (5, 11), (6, 12), (11, 13), (12, 14),
                 (13, 15), (14, 16), (11, 12)]
    else:  #plot mpii keypoint
        EDGES = [(0, 1), (1, 2), (3, 4), (4, 5), (2, 6), (3, 6), (6, 7), (7, 8),
                 (8, 9), (10, 11), (11, 12), (13, 14), (14, 15), (8, 12),
                 (8, 13)]
    NUM_EDGES = len(EDGES)

    colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
            [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
            [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
    cmap = matplotlib.cm.get_cmap('hsv')
    plt.figure()

    img = cv2.imread(imgfile) if type(imgfile) == str else imgfile

    color_set = results['colors'] if 'colors' in results else None

    if 'bbox' in results and ids is None:
        bboxs = results['bbox']
        for j, rect in enumerate(bboxs):
            xmin, ymin, xmax, ymax = rect
            color = colors[0] if color_set is None else colors[color_set[j] %
                                                               len(colors)]
            cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 1)

    canvas = img.copy()
    for i in range(kpt_nums):
        for j in range(len(skeletons)):
W
wangguanzhong 已提交
278
            if skeletons[j][i, 2] < visual_thresh:
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
                continue
            if ids is None:
                color = colors[i] if color_set is None else colors[color_set[j]
                                                                   %
                                                                   len(colors)]
            else:
                color = get_color(ids[j])

            cv2.circle(
                canvas,
                tuple(skeletons[j][i, 0:2].astype('int32')),
                2,
                color,
                thickness=-1)

    to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0)
    fig = matplotlib.pyplot.gcf()

    stickwidth = 2

    for i in range(NUM_EDGES):
        for j in range(len(skeletons)):
            edge = EDGES[i]
W
wangguanzhong 已提交
302 303
            if skeletons[j][edge[0], 2] < visual_thresh or skeletons[j][edge[
                    1], 2] < visual_thresh:
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
                continue

            cur_canvas = canvas.copy()
            X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]]
            Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]]
            mX = np.mean(X)
            mY = np.mean(Y)
            length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
            angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
            polygon = cv2.ellipse2Poly((int(mY), int(mX)),
                                       (int(length / 2), stickwidth),
                                       int(angle), 0, 360, 1)
            if ids is None:
                color = colors[i] if color_set is None else colors[color_set[j]
                                                                   %
                                                                   len(colors)]
            else:
                color = get_color(ids[j])
            cv2.fillConvexPoly(cur_canvas, polygon, color)
            canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
    if returnimg:
        return canvas
    save_name = os.path.join(
        save_dir, os.path.splitext(os.path.basename(imgfile))[0] + '_vis.jpg')
    plt.imsave(save_name, canvas[:, :, ::-1])
    print("keypoint visualize image saved to: " + save_name)
    plt.close()
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353


def visualize_attr(im, results, boxes=None):

    if isinstance(im, str):
        im = Image.open(im).convert('RGB')
    elif isinstance(im, np.ndarray):
        im = Image.fromarray(im)

    draw = ImageDraw.Draw(im)
    for i, res in enumerate(results):
        text = ""
        for k, v in res.items():
            if len(v) == 0: continue
            test_line = "{}: {}\n".format(k, *v)
            text += test_line
        if boxes is None:
            text_loc = (1, 1)
        else:
            box = boxes[i]
            text_loc = (box[2], box[3])
        draw.text(text_loc, text, fill=(0, 0, 255))
    return im