keypoint_hrnet.py 7.2 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. 
# You may obtain a copy of the License at 
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and 
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import numpy as np
import math
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
from ..keypoint_utils import transform_preds
from .. import layers as L

__all__ = ['TopDownHRNet']


@register
class TopDownHRNet(BaseArch):
    __category__ = 'architecture'
    __inject__ = ['loss']

    def __init__(self,
                 width,
                 num_joints,
                 backbone='HRNet',
                 loss='KeyPointMSELoss',
                 post_process='HRNetPostProcess',
                 flip_perm=None,
Z
zhiboniu 已提交
42
                 flip=True,
Z
zhiboniu 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
                 shift_heatmap=True):
        """
        HRNnet network, see https://arxiv.org/abs/1902.09212

        Args:
            backbone (nn.Layer): backbone instance
            post_process (object): `HRNetPostProcess` instance
            flip_perm (list): The left-right joints exchange order list
        """
        super(TopDownHRNet, self).__init__()
        self.backbone = backbone
        self.post_process = HRNetPostProcess()
        self.loss = loss
        self.flip_perm = flip_perm
        self.flip = flip
        self.final_conv = L.Conv2d(width, num_joints, 1, 1, 0, bias=True)
        self.shift_heatmap = shift_heatmap
Z
zhiboniu 已提交
60
        self.deploy = False
Z
zhiboniu 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74

    @classmethod
    def from_config(cls, cfg, *args, **kwargs):
        # backbone
        backbone = create(cfg['backbone'])

        return {'backbone': backbone, }

    def _forward(self):
        feats = self.backbone(self.inputs)
        hrnet_outputs = self.final_conv(feats[0])

        if self.training:
            return self.loss(hrnet_outputs, self.inputs)
Z
zhiboniu 已提交
75 76
        elif self.deploy:
            return hrnet_outputs
Z
zhiboniu 已提交
77 78 79
        else:
            if self.flip:
                self.inputs['image'] = self.inputs['image'].flip([3])
Z
zhiboniu 已提交
80 81
                feats = self.backbone(self.inputs)
                output_flipped = self.final_conv(feats[0])
Z
zhiboniu 已提交
82
                output_flipped = self.flip_back(output_flipped.numpy(),
Z
zhiboniu 已提交
83
                                                self.flip_perm)
Z
zhiboniu 已提交
84 85 86 87
                output_flipped = paddle.to_tensor(output_flipped.copy())
                if self.shift_heatmap:
                    output_flipped[:, :, :, 1:] = output_flipped.clone(
                    )[:, :, :, 0:-1]
Z
zhiboniu 已提交
88 89 90 91 92 93 94 95 96
                hrnet_outputs = (hrnet_outputs + output_flipped) * 0.5
            imshape = (self.inputs['im_shape'].numpy()
                       )[:, ::-1] if 'im_shape' in self.inputs else None
            center = self.inputs['center'].numpy(
            ) if 'center' in self.inputs else np.round(imshape / 2.)
            scale = self.inputs['scale'].numpy(
            ) if 'scale' in self.inputs else imshape / 200.
            outputs = self.post_process(hrnet_outputs, center, scale)
            return outputs
Z
zhiboniu 已提交
97 98 99 100 101

    def get_loss(self):
        return self._forward()

    def get_pred(self):
Z
zhiboniu 已提交
102 103 104
        res_lst = self._forward()
        outputs = {'keypoint': res_lst}
        return outputs
Z
zhiboniu 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118

    def flip_back(self, output_flipped, matched_parts):
        assert output_flipped.ndim == 4,\
                'output_flipped should be [batch_size, num_joints, height, width]'

        output_flipped = output_flipped[:, :, :, ::-1]

        for pair in matched_parts:
            tmp = output_flipped[:, pair[0], :, :].copy()
            output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
            output_flipped[:, pair[1], :, :] = tmp

        return output_flipped

Z
zhiboniu 已提交
119 120

class HRNetPostProcess(object):
Z
zhiboniu 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    def get_max_preds(self, heatmaps):
        '''get predictions from score maps

        Args:
            heatmaps: numpy.ndarray([batch_size, num_joints, height, width])

        Returns:
            preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
            maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
        '''
        assert isinstance(heatmaps,
                          np.ndarray), 'heatmaps should be numpy.ndarray'
        assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'

        batch_size = heatmaps.shape[0]
        num_joints = heatmaps.shape[1]
        width = heatmaps.shape[3]
        heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
        idx = np.argmax(heatmaps_reshaped, 2)
        maxvals = np.amax(heatmaps_reshaped, 2)

        maxvals = maxvals.reshape((batch_size, num_joints, 1))
        idx = idx.reshape((batch_size, num_joints, 1))

        preds = np.tile(idx, (1, 1, 2)).astype(np.float32)

        preds[:, :, 0] = (preds[:, :, 0]) % width
        preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)

        pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
        pred_mask = pred_mask.astype(np.float32)

        preds *= pred_mask

        return preds, maxvals

    def get_final_preds(self, heatmaps, center, scale):
        """the highest heatvalue location with a quarter offset in the
        direction from the highest response to the second highest response.

        Args:
            heatmaps (numpy.ndarray): The predicted heatmaps
            center (numpy.ndarray): The boxes center
            scale (numpy.ndarray): The scale factor

        Returns:
            preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
Z
zhiboniu 已提交
168
            maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
Z
zhiboniu 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
        """

        coords, maxvals = self.get_max_preds(heatmaps)

        heatmap_height = heatmaps.shape[2]
        heatmap_width = heatmaps.shape[3]

        for n in range(coords.shape[0]):
            for p in range(coords.shape[1]):
                hm = heatmaps[n][p]
                px = int(math.floor(coords[n][p][0] + 0.5))
                py = int(math.floor(coords[n][p][1] + 0.5))
                if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
                    diff = np.array([
                        hm[py][px + 1] - hm[py][px - 1],
                        hm[py + 1][px] - hm[py - 1][px]
                    ])
                    coords[n][p] += np.sign(diff) * .25
        preds = coords.copy()

        # Transform back
        for i in range(coords.shape[0]):
            preds[i] = transform_preds(coords[i], center[i], scale[i],
                                       [heatmap_width, heatmap_height])

        return preds, maxvals

Z
zhiboniu 已提交
196 197 198 199 200 201 202 203
    def __call__(self, output, center, scale):
        preds, maxvals = self.get_final_preds(output.numpy(), center, scale)
        outputs = [[
            np.concatenate(
                (preds, maxvals), axis=-1), np.mean(
                    maxvals, axis=1)
        ]]
        return outputs