keypoint_hrnet.py 6.7 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. 
# You may obtain a copy of the License at 
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and 
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import numpy as np
import math
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
from ..keypoint_utils import transform_preds
from .. import layers as L

__all__ = ['TopDownHRNet']


@register
class TopDownHRNet(BaseArch):
    __category__ = 'architecture'
    __inject__ = ['loss']

    def __init__(self,
                 width,
                 num_joints,
                 backbone='HRNet',
                 loss='KeyPointMSELoss',
                 post_process='HRNetPostProcess',
                 flip_perm=None,
                 flip=False,
                 shift_heatmap=True):
        """
        HRNnet network, see https://arxiv.org/abs/1902.09212

        Args:
            backbone (nn.Layer): backbone instance
            post_process (object): `HRNetPostProcess` instance
            flip_perm (list): The left-right joints exchange order list
        """
        super(TopDownHRNet, self).__init__()
        self.backbone = backbone
        self.post_process = HRNetPostProcess()
        self.loss = loss
        self.flip_perm = flip_perm
        self.flip = flip
        self.final_conv = L.Conv2d(width, num_joints, 1, 1, 0, bias=True)
        self.shift_heatmap = shift_heatmap

    @classmethod
    def from_config(cls, cfg, *args, **kwargs):
        # backbone
        backbone = create(cfg['backbone'])

        return {'backbone': backbone, }

    def _forward(self):
        feats = self.backbone(self.inputs)
        hrnet_outputs = self.final_conv(feats[0])

        if self.training:
            return self.loss(hrnet_outputs, self.inputs)
        else:
            if self.flip:
                self.inputs['image'] = self.inputs['image'].flip([3])
                feats = backbone(inputs)
                output_flipped = self.final_conv(feats)
                output_flipped = self.flip_back(output_flipped.numpy(),
                                                flip_perm)
                output_flipped = paddle.to_tensor(output_flipped.copy())
                if self.shift_heatmap:
                    output_flipped[:, :, :, 1:] = output_flipped.clone(
                    )[:, :, :, 0:-1]
                output = (output + output_flipped) * 0.5
            preds, maxvals = self.post_process(hrnet_outputs, self.inputs)
            return preds, maxvals

    def get_loss(self):
        return self._forward()

    def get_pred(self):
        preds, maxvals = self._forward()
        output = {'kpt_coord': preds, 'kpt_score': maxvals}
        return output


class HRNetPostProcess(object):
    def flip_back(self, output_flipped, matched_parts):
        assert output_flipped.ndim == 4,\
                'output_flipped should be [batch_size, num_joints, height, width]'

        output_flipped = output_flipped[:, :, :, ::-1]

        for pair in matched_parts:
            tmp = output_flipped[:, pair[0], :, :].copy()
            output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
            output_flipped[:, pair[1], :, :] = tmp

        return output_flipped

    def get_max_preds(self, heatmaps):
        '''get predictions from score maps

        Args:
            heatmaps: numpy.ndarray([batch_size, num_joints, height, width])

        Returns:
            preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
            maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
        '''
        assert isinstance(heatmaps,
                          np.ndarray), 'heatmaps should be numpy.ndarray'
        assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'

        batch_size = heatmaps.shape[0]
        num_joints = heatmaps.shape[1]
        width = heatmaps.shape[3]
        heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
        idx = np.argmax(heatmaps_reshaped, 2)
        maxvals = np.amax(heatmaps_reshaped, 2)

        maxvals = maxvals.reshape((batch_size, num_joints, 1))
        idx = idx.reshape((batch_size, num_joints, 1))

        preds = np.tile(idx, (1, 1, 2)).astype(np.float32)

        preds[:, :, 0] = (preds[:, :, 0]) % width
        preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)

        pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
        pred_mask = pred_mask.astype(np.float32)

        preds *= pred_mask

        return preds, maxvals

    def get_final_preds(self, heatmaps, center, scale):
        """the highest heatvalue location with a quarter offset in the
        direction from the highest response to the second highest response.

        Args:
            heatmaps (numpy.ndarray): The predicted heatmaps
            center (numpy.ndarray): The boxes center
            scale (numpy.ndarray): The scale factor

        Returns:
            preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
            maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
        """

        coords, maxvals = self.get_max_preds(heatmaps)

        heatmap_height = heatmaps.shape[2]
        heatmap_width = heatmaps.shape[3]

        for n in range(coords.shape[0]):
            for p in range(coords.shape[1]):
                hm = heatmaps[n][p]
                px = int(math.floor(coords[n][p][0] + 0.5))
                py = int(math.floor(coords[n][p][1] + 0.5))
                if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
                    diff = np.array([
                        hm[py][px + 1] - hm[py][px - 1],
                        hm[py + 1][px] - hm[py - 1][px]
                    ])
                    coords[n][p] += np.sign(diff) * .25
        preds = coords.copy()

        # Transform back
        for i in range(coords.shape[0]):
            preds[i] = transform_preds(coords[i], center[i], scale[i],
                                       [heatmap_width, heatmap_height])

        return preds, maxvals

    def __call__(self, output, inputs):
        preds, maxvals = self.get_final_preds(
            output.numpy(), inputs['center'].numpy(), inputs['scale'].numpy())

        return preds, maxvals