det_keypoint_unite_infer.py 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16
import json
17
import cv2
W
wangguanzhong 已提交
18
import math
19 20
import numpy as np
import paddle
W
wangguanzhong 已提交
21
import yaml
22

23
from det_keypoint_unite_utils import argsparser
24
from preprocess import decode_image
W
wangguanzhong 已提交
25 26 27
from infer import Detector, DetectorPicoDet, PredictConfig, print_arguments, get_test_images, bench_log
from keypoint_infer import KeyPointDetector, PredictConfig_KeyPoint
from visualize import visualize_pose
W
wangguanzhong 已提交
28 29
from benchmark_utils import PaddleInferBenchmark
from utils import get_current_memory_mb
30 31 32 33 34 35
from keypoint_postprocess import translate_to_ori_images

KEYPOINT_SUPPORT_MODELS = {
    'HigherHRNet': 'keypoint_bottomup',
    'HRNet': 'keypoint_topdown'
}
36 37


38 39 40 41 42 43 44 45
def predict_with_given_det(image, det_res, keypoint_detector,
                           keypoint_batch_size, det_threshold,
                           keypoint_threshold, run_benchmark):
    rec_images, records, det_rects = keypoint_detector.get_person_from_rect(
        image, det_res, det_threshold)
    keypoint_vector = []
    score_vector = []

W
wangguanzhong 已提交
46 47 48 49 50
    rect_vector = det_rects
    keypoint_results = keypoint_detector.predict_image(
        rec_images, run_benchmark, repeats=10, visual=False)
    keypoint_vector, score_vector = translate_to_ori_images(keypoint_results,
                                                            np.array(records))
51 52
    keypoint_res = {}
    keypoint_res['keypoint'] = [
W
wangguanzhong 已提交
53
        keypoint_vector.tolist(), score_vector.tolist()
54 55 56
    ] if len(keypoint_vector) > 0 else [[], []]
    keypoint_res['bbox'] = rect_vector
    return keypoint_res
57 58


W
wangguanzhong 已提交
59 60 61
def topdown_unite_predict(detector,
                          topdown_keypoint_detector,
                          image_list,
62 63
                          keypoint_batch_size=1,
                          save_res=False):
W
wangguanzhong 已提交
64
    det_timer = detector.get_timer()
65
    store_res = []
66
    for i, img_file in enumerate(image_list):
W
wangguanzhong 已提交
67 68
        # Decode image in advance in det + pose prediction
        det_timer.preprocess_time_s.start()
69
        image, _ = decode_image(img_file, {})
W
wangguanzhong 已提交
70 71 72
        det_timer.preprocess_time_s.end()

        if FLAGS.run_benchmark:
W
wangguanzhong 已提交
73 74 75
            results = detector.predict_image(
                [image], run_benchmark=True, repeats=10)

W
wangguanzhong 已提交
76 77 78 79 80
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
        else:
W
wangguanzhong 已提交
81
            results = detector.predict_image([image], visual=False)
W
wangguanzhong 已提交
82

Z
zhiboniu 已提交
83 84
        if results['boxes_num'] == 0:
            continue
85 86 87 88 89

        keypoint_res = predict_with_given_det(
            image, results, topdown_keypoint_detector, keypoint_batch_size,
            FLAGS.det_threshold, FLAGS.keypoint_threshold, FLAGS.run_benchmark)

90 91 92 93 94
        if save_res:
            store_res.append([
                i, keypoint_res['bbox'],
                [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
            ])
W
wangguanzhong 已提交
95 96 97 98 99 100 101 102
        if FLAGS.run_benchmark:
            cm, gm, gu = get_current_memory_mb()
            topdown_keypoint_detector.cpu_mem += cm
            topdown_keypoint_detector.gpu_mem += gm
            topdown_keypoint_detector.gpu_util += gu
        else:
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
W
wangguanzhong 已提交
103
            visualize_pose(
W
wangguanzhong 已提交
104 105
                img_file,
                keypoint_res,
W
wangguanzhong 已提交
106
                visual_thresh=FLAGS.keypoint_threshold,
W
wangguanzhong 已提交
107
                save_dir=FLAGS.output_dir)
108 109 110 111 112 113 114 115 116 117
    if save_res:
        """
        1) store_res: a list of image_data
        2) image_data: [imageid, rects, [keypoints, scores]]
        3) rects: list of rect [xmin, ymin, xmax, ymax]
        4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
        5) scores: mean of all joint conf
        """
        with open("det_keypoint_unite_image_results.json", 'w') as wf:
            json.dump(store_res, wf, indent=4)
118 119


W
wangguanzhong 已提交
120 121 122
def topdown_unite_predict_video(detector,
                                topdown_keypoint_detector,
                                camera_id,
123 124
                                keypoint_batch_size=1,
                                save_res=False):
125
    video_name = 'output.mp4'
126 127 128 129
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
W
wangguanzhong 已提交
130
        video_name = os.path.split(FLAGS.video_file)[-1]
131
    # Get Video info : resolution, fps, frame count
132 133
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
134 135 136 137
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

138 139 140
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
W
wangguanzhong 已提交
141
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
142
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
143
    index = 0
144
    store_res = []
145 146 147 148 149
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        index += 1
150
        print('detect frame: %d' % (index))
151 152

        frame2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
W
wangguanzhong 已提交
153 154

        results = detector.predict_image([frame2], visual=False)
155 156 157 158 159

        keypoint_res = predict_with_given_det(
            frame2, results, topdown_keypoint_detector, keypoint_batch_size,
            FLAGS.det_threshold, FLAGS.keypoint_threshold, FLAGS.run_benchmark)

W
wangguanzhong 已提交
160
        im = visualize_pose(
161 162
            frame,
            keypoint_res,
W
wangguanzhong 已提交
163
            visual_thresh=FLAGS.keypoint_threshold,
164
            returnimg=True)
165 166 167 168 169
        if save_res:
            store_res.append([
                index, keypoint_res['bbox'],
                [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
            ])
170 171 172 173 174 175 176

        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    writer.release()
W
wangguanzhong 已提交
177
    print('output_video saved to: {}'.format(out_path))
178 179 180 181 182 183 184 185 186 187
    if save_res:
        """
        1) store_res: a list of frame_data
        2) frame_data: [frameid, rects, [keypoints, scores]]
        3) rects: list of rect [xmin, ymin, xmax, ymax]
        4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
        5) scores: mean of all joint conf
        """
        with open("det_keypoint_unite_video_results.json", 'w') as wf:
            json.dump(store_res, wf, indent=4)
188 189 190


def main():
W
wangguanzhong 已提交
191 192 193 194
    deploy_file = os.path.join(FLAGS.det_model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
195
    detector_func = 'Detector'
W
wangguanzhong 已提交
196
    if arch == 'PicoDet':
197 198
        detector_func = 'DetectorPicoDet'

W
wangguanzhong 已提交
199
    detector = eval(detector_func)(FLAGS.det_model_dir,
200 201 202 203 204 205 206
                                   device=FLAGS.device,
                                   run_mode=FLAGS.run_mode,
                                   trt_min_shape=FLAGS.trt_min_shape,
                                   trt_max_shape=FLAGS.trt_max_shape,
                                   trt_opt_shape=FLAGS.trt_opt_shape,
                                   trt_calib_mode=FLAGS.trt_calib_mode,
                                   cpu_threads=FLAGS.cpu_threads,
W
wangguanzhong 已提交
207 208
                                   enable_mkldnn=FLAGS.enable_mkldnn,
                                   threshold=FLAGS.det_threshold)
209

W
wangguanzhong 已提交
210
    topdown_keypoint_detector = KeyPointDetector(
211
        FLAGS.keypoint_model_dir,
G
Guanghua Yu 已提交
212
        device=FLAGS.device,
213
        run_mode=FLAGS.run_mode,
214
        batch_size=FLAGS.keypoint_batch_size,
215 216 217 218 219
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
Z
zhiboniu 已提交
220 221
        enable_mkldnn=FLAGS.enable_mkldnn,
        use_dark=FLAGS.use_dark)
W
wangguanzhong 已提交
222 223 224
    keypoint_arch = topdown_keypoint_detector.pred_config.arch
    assert KEYPOINT_SUPPORT_MODELS[
        keypoint_arch] == 'keypoint_topdown', 'Detection-Keypoint unite inference only supports topdown models.'
225 226 227 228

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        topdown_unite_predict_video(detector, topdown_keypoint_detector,
229 230
                                    FLAGS.camera_id, FLAGS.keypoint_batch_size,
                                    FLAGS.save_res)
231 232 233
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
W
wangguanzhong 已提交
234
        topdown_unite_predict(detector, topdown_keypoint_detector, img_list,
235
                              FLAGS.keypoint_batch_size, FLAGS.save_res)
W
wangguanzhong 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
            topdown_keypoint_detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            det_model_dir = FLAGS.det_model_dir
            det_model_info = {
                'model_name': det_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(detector, img_list, det_model_info, name='Det')
            keypoint_model_dir = FLAGS.keypoint_model_dir
            keypoint_model_info = {
                'model_name': keypoint_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(topdown_keypoint_detector, img_list, keypoint_model_info,
                      FLAGS.keypoint_batch_size, 'KeyPoint')
254 255 256 257 258 259 260


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
261 262 263
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
264 265

    main()