gflv2_r50_fpn.yml 1.0 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
architecture: GFL
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams

GFL:
  backbone: ResNet
  neck: FPN
  head: GFLHead

ResNet:
  depth: 50
  variant: b
  norm_type: bn
  freeze_at: 0
  return_idx: [1,2,3]
  num_stages: 4

FPN:
  out_channel: 256
  spatial_scales: [0.125, 0.0625, 0.03125]
  extra_stage: 2
  has_extra_convs: true
  use_c5: false

GFLHead:
  conv_feat:
    name: FCOSFeat
    feat_in: 256
    feat_out: 256
    num_convs: 4
    norm_type: "gn"
    use_dcn: false
  fpn_stride: [8, 16, 32, 64, 128]
  prior_prob: 0.01
  reg_max: 16
  dgqp_module:
    name: DGQP
    reg_topk: 4
    reg_channels: 64
    add_mean: True
40
  loss_class:
G
Guanghua Yu 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    name: QualityFocalLoss
    use_sigmoid: False
    beta: 2.0
    loss_weight: 1.0
  loss_dfl:
    name: DistributionFocalLoss
    loss_weight: 0.25
  loss_bbox:
    name: GIoULoss
    loss_weight: 2.0
  nms:
    name: MultiClassNMS
    nms_top_k: 1000
    keep_top_k: 100
    score_threshold: 0.025
    nms_threshold: 0.6