architecture: GFL pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams GFL: backbone: ResNet neck: FPN head: GFLHead ResNet: depth: 50 variant: b norm_type: bn freeze_at: 0 return_idx: [1,2,3] num_stages: 4 FPN: out_channel: 256 spatial_scales: [0.125, 0.0625, 0.03125] extra_stage: 2 has_extra_convs: true use_c5: false GFLHead: conv_feat: name: FCOSFeat feat_in: 256 feat_out: 256 num_convs: 4 norm_type: "gn" use_dcn: false fpn_stride: [8, 16, 32, 64, 128] prior_prob: 0.01 reg_max: 16 dgqp_module: name: DGQP reg_topk: 4 reg_channels: 64 add_mean: True loss_class: name: QualityFocalLoss use_sigmoid: False beta: 2.0 loss_weight: 1.0 loss_dfl: name: DistributionFocalLoss loss_weight: 0.25 loss_bbox: name: GIoULoss loss_weight: 2.0 nms: name: MultiClassNMS nms_top_k: 1000 keep_top_k: 100 score_threshold: 0.025 nms_threshold: 0.6