cudnn_helper.h 11.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Pass CI  
Yu Yang 已提交
17
#include <vector>
18 19

#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
K
Kexin Zhao 已提交
22
#include "paddle/fluid/platform/float16.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/macros.h"
D
dangqingqing 已提交
24

D
dzhwinter 已提交
25 26
DECLARE_bool(cudnn_deterministic);

D
dangqingqing 已提交
27 28 29
namespace paddle {
namespace platform {

Q
Qiao Longfei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
  switch (status) {
    case CUDNN_STATUS_SUCCESS:
      return "CUDNN_STATUS_SUCCESS";
    case CUDNN_STATUS_NOT_INITIALIZED:
      return "CUDNN_STATUS_NOT_INITIALIZED";
    case CUDNN_STATUS_ALLOC_FAILED:
      return "CUDNN_STATUS_ALLOC_FAILED";
    case CUDNN_STATUS_BAD_PARAM:
      return "CUDNN_STATUS_BAD_PARAM";
    case CUDNN_STATUS_INTERNAL_ERROR:
      return "CUDNN_STATUS_INTERNAL_ERROR";
    case CUDNN_STATUS_INVALID_VALUE:
      return "CUDNN_STATUS_INVALID_VALUE";
    case CUDNN_STATUS_ARCH_MISMATCH:
      return "CUDNN_STATUS_ARCH_MISMATCH";
    case CUDNN_STATUS_MAPPING_ERROR:
      return "CUDNN_STATUS_MAPPING_ERROR";
    case CUDNN_STATUS_EXECUTION_FAILED:
      return "CUDNN_STATUS_EXECUTION_FAILED";
    case CUDNN_STATUS_NOT_SUPPORTED:
      return "CUDNN_STATUS_NOT_SUPPORTED";
    case CUDNN_STATUS_LICENSE_ERROR:
      return "CUDNN_STATUS_LICENSE_ERROR";
    default:
      return "Unknown cudnn error number";
  }
}

#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

#define CUDNN_ENFORCE(condition)                                  \
  do {                                                            \
    cudnnStatus_t status = condition;                             \
    if (status != CUDNN_STATUS_SUCCESS) {                         \
      VLOG(1) << ::paddle::platform::cudnnGetErrorString(status); \
      PADDLE_THROW("cuDNN call failed");                          \
    }                                                             \
  } while (false)

D
"done"  
dzhwinter 已提交
71 72 73 74 75 76
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
#pragma message "This message is intended to annoy you enough to update."
#pragma message \
    "please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
D
dangqingqing 已提交
77

D
dzhwinter 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX;
    case PoolingMode::kAverage:
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
#else
D
dangqingqing 已提交
91

D
dzhwinter 已提交
92 93 94 95 96 97 98 99 100 101 102 103
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX_DETERMINISTIC;
    case PoolingMode::kAverage:
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
D
dzhwinter 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117
#endif  // CUDNN_VERSION < 6000

enum class DataLayout {  // Not use
  kNHWC,
  kNCHW,
  kNCDHW,
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kAverage,
  kMaximumDeterministic,
};
D
dzhwinter 已提交
118

D
dangqingqing 已提交
119 120 121
template <typename T>
class CudnnDataType;

K
Kexin Zhao 已提交
122 123 124 125
template <>
class CudnnDataType<float16> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_HALF;
K
Kexin Zhao 已提交
126
  // The scaling param type is float for HALF and FLOAT tensors
K
update  
Kexin Zhao 已提交
127 128
  using ScalingParamType = const float;
  using BatchNormParamType = float;
K
Kexin Zhao 已提交
129
  static ScalingParamType* kOne() {
K
Kexin Zhao 已提交
130
    static ScalingParamType v = 1.0;
K
Kexin Zhao 已提交
131 132 133
    return &v;
  }
  static ScalingParamType* kZero() {
K
Kexin Zhao 已提交
134
    static ScalingParamType v = 0.0;
K
Kexin Zhao 已提交
135 136 137 138
    return &v;
  }
};

D
dangqingqing 已提交
139 140 141 142
template <>
class CudnnDataType<float> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
K
update  
Kexin Zhao 已提交
143 144
  using ScalingParamType = const float;
  using BatchNormParamType = float;
Q
Qiao Longfei 已提交
145 146 147 148 149 150 151 152
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
153 154 155 156 157 158
};

template <>
class CudnnDataType<double> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
K
update  
Kexin Zhao 已提交
159 160
  using ScalingParamType = const double;
  using BatchNormParamType = double;
Q
Qiao Longfei 已提交
161 162 163 164 165 166 167 168
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
169 170
};

C
chengduoZH 已提交
171 172
inline cudnnTensorFormat_t GetCudnnTensorFormat(
    const DataLayout& order) {  // Not use
D
dangqingqing 已提交
173 174 175 176 177
  switch (order) {
    case DataLayout::kNHWC:
      return CUDNN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return CUDNN_TENSOR_NCHW;
C
chengduoZH 已提交
178
    case DataLayout::kNCDHW:
武毅 已提交
179
      return CUDNN_TENSOR_NCHW;  // NOTE: cudnn treat NdTensor as the same
D
dangqingqing 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    default:
      PADDLE_THROW("Unknown cudnn equivalent for order");
  }
  return CUDNN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateTensorDescriptor(&desc_));
  }
  ~ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyTensorDescriptor(desc_));
  }

  inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
197 198 199
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    // the format is not used now, will add later
D
dangqingqing 已提交
200 201
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
202 203
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
D
dangqingqing 已提交
204
    }
武毅 已提交
205
    // Update tensor descriptor dims setting if groups > 1
武毅 已提交
206
    // NOTE: Assume using NCHW or NCDHW order
武毅 已提交
207 208 209 210
    std::vector<int> dims_with_group(dims.begin(), dims.end());  // copy
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
211
    PADDLE_ENFORCE(dynload::cudnnSetTensorNdDescriptor(
武毅 已提交
212 213
        desc_, type, dims_with_group.size(), dims_with_group.data(),
        strides.data()));
D
dangqingqing 已提交
214 215 216 217 218
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
219 220 221 222
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
                      groups);
D
dangqingqing 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  }

 private:
  cudnnTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateFilterDescriptor(&desc_));
  }
  ~ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyFilterDescriptor(desc_));
  }

  inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
241 242
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
C
chengduoZH 已提交
243
    // filter layout: MCHW(MCDHW), where M is the number of
武毅 已提交
244
    // output image channels, C is the number of input image channels,
C
chengduoZH 已提交
245 246
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
武毅 已提交
247 248 249 250 251
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
252
    PADDLE_ENFORCE(dynload::cudnnSetFilterNdDescriptor(
武毅 已提交
253 254
        desc_, type, format, kernel_with_group.size(),
        kernel_with_group.data()));
D
dangqingqing 已提交
255 256 257 258 259
    return desc_;
  }

  template <typename T>
  inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
260 261
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
D
dangqingqing 已提交
262
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
武毅 已提交
263
                      kernel, groups);
D
dangqingqing 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
  }

 private:
  cudnnFilterDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateConvolutionDescriptor(&desc_));
  }
  ~ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyConvolutionDescriptor(desc_));
  }

  inline cudnnConvolutionDescriptor_t descriptor(
      cudnnDataType_t type, const std::vector<int>& pads,
      const std::vector<int>& strides, const std::vector<int>& dilations) {
    PADDLE_ENFORCE_EQ(pads.size(), strides.size());
    PADDLE_ENFORCE_EQ(pads.size(), dilations.size());
285

286
#if !CUDNN_VERSION_MIN(6, 0, 0)
287 288 289 290 291
    // cudnn v5 does not support dilation conv, the argument is called upscale
    // instead of dilations and it is must be one.
    for (size_t i = 0; i < dilations.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          dilations[i], 1,
292 293 294
          "Dilations conv is not supported in this cuDNN version(%d.%d.%d).",
          CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
          CUDNN_VERSION % 100);
295 296 297
    }
#endif

K
Kexin Zhao 已提交
298 299
    cudnnDataType_t compute_type =
        (type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
300
    PADDLE_ENFORCE(dynload::cudnnSetConvolutionNdDescriptor(
D
dangqingqing 已提交
301
        desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
K
Kexin Zhao 已提交
302
        CUDNN_CROSS_CORRELATION, compute_type));
303
    return desc_;
D
dangqingqing 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  }

  template <typename T>
  inline cudnnConvolutionDescriptor_t descriptor(
      const std::vector<int>& pads, const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  cudnnConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreatePoolingDescriptor(&desc_));
  }
  ~ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyPoolingDescriptor(desc_));
  }

  inline cudnnPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                             const std::vector<int>& kernel,
                                             const std::vector<int>& pads,
                                             const std::vector<int>& strides) {
    PADDLE_ENFORCE_EQ(kernel.size(), pads.size());
    PADDLE_ENFORCE_EQ(kernel.size(), strides.size());
333
    PADDLE_ENFORCE(dynload::cudnnSetPoolingNdDescriptor(
D
dzhwinter 已提交
334
        desc_, (GetPoolingMode(mode)),
D
dangqingqing 已提交
335 336
        CUDNN_PROPAGATE_NAN,  // Always propagate nans.
        kernel.size(), kernel.data(), pads.data(), strides.data()));
337
    return desc_;
D
dangqingqing 已提交
338 339 340 341 342 343 344
  }

 private:
  cudnnPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

345 346 347 348 349
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
  if (use_cudnn) {
350
    auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
351 352 353 354 355 356
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

D
dangqingqing 已提交
357 358
}  // namespace platform
}  // namespace paddle