cudnn_helper.h 10.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Pass CI  
Yu Yang 已提交
17
#include <vector>
18 19

#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
20 21
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
K
Kexin Zhao 已提交
22
#include "paddle/fluid/platform/float16.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/macros.h"
D
dangqingqing 已提交
24

D
dzhwinter 已提交
25 26
DECLARE_bool(cudnn_deterministic);

D
dangqingqing 已提交
27 28 29
namespace paddle {
namespace platform {

Q
Qiao Longfei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
  switch (status) {
    case CUDNN_STATUS_SUCCESS:
      return "CUDNN_STATUS_SUCCESS";
    case CUDNN_STATUS_NOT_INITIALIZED:
      return "CUDNN_STATUS_NOT_INITIALIZED";
    case CUDNN_STATUS_ALLOC_FAILED:
      return "CUDNN_STATUS_ALLOC_FAILED";
    case CUDNN_STATUS_BAD_PARAM:
      return "CUDNN_STATUS_BAD_PARAM";
    case CUDNN_STATUS_INTERNAL_ERROR:
      return "CUDNN_STATUS_INTERNAL_ERROR";
    case CUDNN_STATUS_INVALID_VALUE:
      return "CUDNN_STATUS_INVALID_VALUE";
    case CUDNN_STATUS_ARCH_MISMATCH:
      return "CUDNN_STATUS_ARCH_MISMATCH";
    case CUDNN_STATUS_MAPPING_ERROR:
      return "CUDNN_STATUS_MAPPING_ERROR";
    case CUDNN_STATUS_EXECUTION_FAILED:
      return "CUDNN_STATUS_EXECUTION_FAILED";
    case CUDNN_STATUS_NOT_SUPPORTED:
      return "CUDNN_STATUS_NOT_SUPPORTED";
    case CUDNN_STATUS_LICENSE_ERROR:
      return "CUDNN_STATUS_LICENSE_ERROR";
    default:
      return "Unknown cudnn error number";
  }
}

#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

#define CUDNN_ENFORCE(condition)                                  \
  do {                                                            \
    cudnnStatus_t status = condition;                             \
    if (status != CUDNN_STATUS_SUCCESS) {                         \
      VLOG(1) << ::paddle::platform::cudnnGetErrorString(status); \
      PADDLE_THROW("cuDNN call failed");                          \
    }                                                             \
  } while (false)

C
chengduoZH 已提交
71
enum class DataLayout {  // Not use
D
dangqingqing 已提交
72 73
  kNHWC,
  kNCHW,
C
chengduoZH 已提交
74
  kNCDHW,
D
dangqingqing 已提交
75 76 77 78 79 80
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kAverage,
D
dzhwinter 已提交
81
  kMaximumDeterministic,
D
dangqingqing 已提交
82 83
};

D
dzhwinter 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX_DETERMINISTIC;
    case PoolingMode::kAverage:
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}

D
dangqingqing 已提交
97 98 99
template <typename T>
class CudnnDataType;

K
Kexin Zhao 已提交
100 101 102 103
template <>
class CudnnDataType<float16> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_HALF;
K
Kexin Zhao 已提交
104
  // The scaling param type is float for HALF and FLOAT tensors
K
update  
Kexin Zhao 已提交
105 106
  using ScalingParamType = const float;
  using BatchNormParamType = float;
K
Kexin Zhao 已提交
107
  static ScalingParamType* kOne() {
K
Kexin Zhao 已提交
108
    static ScalingParamType v = 1.0;
K
Kexin Zhao 已提交
109 110 111
    return &v;
  }
  static ScalingParamType* kZero() {
K
Kexin Zhao 已提交
112
    static ScalingParamType v = 0.0;
K
Kexin Zhao 已提交
113 114 115 116
    return &v;
  }
};

D
dangqingqing 已提交
117 118 119 120
template <>
class CudnnDataType<float> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
K
update  
Kexin Zhao 已提交
121 122
  using ScalingParamType = const float;
  using BatchNormParamType = float;
Q
Qiao Longfei 已提交
123 124 125 126 127 128 129 130
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
131 132 133 134 135 136
};

template <>
class CudnnDataType<double> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
K
update  
Kexin Zhao 已提交
137 138
  using ScalingParamType = const double;
  using BatchNormParamType = double;
Q
Qiao Longfei 已提交
139 140 141 142 143 144 145 146
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
147 148
};

C
chengduoZH 已提交
149 150
inline cudnnTensorFormat_t GetCudnnTensorFormat(
    const DataLayout& order) {  // Not use
D
dangqingqing 已提交
151 152 153 154 155
  switch (order) {
    case DataLayout::kNHWC:
      return CUDNN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return CUDNN_TENSOR_NCHW;
C
chengduoZH 已提交
156
    case DataLayout::kNCDHW:
武毅 已提交
157
      return CUDNN_TENSOR_NCHW;  // NOTE: cudnn treat NdTensor as the same
D
dangqingqing 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    default:
      PADDLE_THROW("Unknown cudnn equivalent for order");
  }
  return CUDNN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateTensorDescriptor(&desc_));
  }
  ~ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyTensorDescriptor(desc_));
  }

  inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
175 176 177
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    // the format is not used now, will add later
D
dangqingqing 已提交
178 179
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
180 181
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
D
dangqingqing 已提交
182
    }
武毅 已提交
183
    // Update tensor descriptor dims setting if groups > 1
武毅 已提交
184
    // NOTE: Assume using NCHW or NCDHW order
武毅 已提交
185 186 187 188
    std::vector<int> dims_with_group(dims.begin(), dims.end());  // copy
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
189
    PADDLE_ENFORCE(dynload::cudnnSetTensorNdDescriptor(
武毅 已提交
190 191
        desc_, type, dims_with_group.size(), dims_with_group.data(),
        strides.data()));
D
dangqingqing 已提交
192 193 194 195 196
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
197 198 199 200
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
                      groups);
D
dangqingqing 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  }

 private:
  cudnnTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateFilterDescriptor(&desc_));
  }
  ~ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyFilterDescriptor(desc_));
  }

  inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
219 220
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
C
chengduoZH 已提交
221
    // filter layout: MCHW(MCDHW), where M is the number of
武毅 已提交
222
    // output image channels, C is the number of input image channels,
C
chengduoZH 已提交
223 224
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
武毅 已提交
225 226 227 228 229
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
230
    PADDLE_ENFORCE(dynload::cudnnSetFilterNdDescriptor(
武毅 已提交
231 232
        desc_, type, format, kernel_with_group.size(),
        kernel_with_group.data()));
D
dangqingqing 已提交
233 234 235 236 237
    return desc_;
  }

  template <typename T>
  inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
238 239
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
D
dangqingqing 已提交
240
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
武毅 已提交
241
                      kernel, groups);
D
dangqingqing 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
  }

 private:
  cudnnFilterDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateConvolutionDescriptor(&desc_));
  }
  ~ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyConvolutionDescriptor(desc_));
  }

  inline cudnnConvolutionDescriptor_t descriptor(
      cudnnDataType_t type, const std::vector<int>& pads,
      const std::vector<int>& strides, const std::vector<int>& dilations) {
    PADDLE_ENFORCE_EQ(pads.size(), strides.size());
    PADDLE_ENFORCE_EQ(pads.size(), dilations.size());
263

264
#if !CUDNN_VERSION_MIN(6, 0, 0)
265 266 267 268 269
    // cudnn v5 does not support dilation conv, the argument is called upscale
    // instead of dilations and it is must be one.
    for (size_t i = 0; i < dilations.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          dilations[i], 1,
270 271 272
          "Dilations conv is not supported in this cuDNN version(%d.%d.%d).",
          CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
          CUDNN_VERSION % 100);
273 274 275
    }
#endif

K
Kexin Zhao 已提交
276 277
    cudnnDataType_t compute_type =
        (type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
278
    PADDLE_ENFORCE(dynload::cudnnSetConvolutionNdDescriptor(
D
dangqingqing 已提交
279
        desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
K
Kexin Zhao 已提交
280
        CUDNN_CROSS_CORRELATION, compute_type));
281
    return desc_;
D
dangqingqing 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
  }

  template <typename T>
  inline cudnnConvolutionDescriptor_t descriptor(
      const std::vector<int>& pads, const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  cudnnConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreatePoolingDescriptor(&desc_));
  }
  ~ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyPoolingDescriptor(desc_));
  }

  inline cudnnPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                             const std::vector<int>& kernel,
                                             const std::vector<int>& pads,
                                             const std::vector<int>& strides) {
    PADDLE_ENFORCE_EQ(kernel.size(), pads.size());
    PADDLE_ENFORCE_EQ(kernel.size(), strides.size());
311
    PADDLE_ENFORCE(dynload::cudnnSetPoolingNdDescriptor(
D
dzhwinter 已提交
312
        desc_, (GetPoolingMode(mode)),
D
dangqingqing 已提交
313 314
        CUDNN_PROPAGATE_NAN,  // Always propagate nans.
        kernel.size(), kernel.data(), pads.data(), strides.data()));
315
    return desc_;
D
dangqingqing 已提交
316 317 318 319 320 321 322
  }

 private:
  cudnnPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

323 324 325 326 327
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
  if (use_cudnn) {
328
    auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
329 330 331 332 333 334
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

D
dangqingqing 已提交
335 336
}  // namespace platform
}  // namespace paddle