operator.cc 27.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14 15 16
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL

17 18 19
#include <gflags/gflags.h>
#include <glog/logging.h>

20
#include <algorithm>
21

Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
24
#include "paddle/fluid/framework/lod_tensor.h"
25
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
26 27
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h"
28
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
29

D
dzhwinter 已提交
30
DECLARE_bool(benchmark);
C
chengduoZH 已提交
31 32 33
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
34

Q
Qiao Longfei 已提交
35 36 37
namespace paddle {
namespace framework {

38 39 40 41 42 43
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
44

Q
qiaolongfei 已提交
45 46 47 48 49 50 51 52 53 54 55
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
    return framework::ToDataType(var->Get<framework::LoDTensor>().type());
  } else if (var->IsType<framework::SelectedRows>()) {
    return framework::ToDataType(
        var->Get<framework::SelectedRows>().value().type());
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

56 57
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
58
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
59 60
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
61 62
  }

M
minqiyang 已提交
63 64
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
D
dzhwinter 已提交
65
    if (UNLIKELY(!tensor.IsInitialized())) {
66
      return DDim({-1});
67
    }
M
minqiyang 已提交
68 69 70 71 72 73 74
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
75 76 77 78 79
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
80 81 82 83 84 85
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
86 87 88 89 90
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
91

M
minqiyang 已提交
92 93
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
D
dzhwinter 已提交
94
    if (UNLIKELY(!tensor.IsInitialized())) {
95 96
      return "";
    }
M
minqiyang 已提交
97 98
    return DataTypeToString(ToDataType(tensor.type()));
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
99
    auto tensor = var->Get<SelectedRows>().value();
D
dzhwinter 已提交
100
    if (UNLIKELY(!tensor.IsInitialized())) {
Q
Qiao Longfei 已提交
101 102 103 104
      return "uninited";
    } else {
      return DataTypeToString(ToDataType(tensor.type()));
    }
D
dzhwinter 已提交
105 106 107 108 109
  } else {
    return "";
  }
}

110 111 112 113 114 115
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
116 117
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
118 119 120 121 122
  }

  return -1;
}

Q
Qiao Longfei 已提交
123 124 125 126 127 128 129 130
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
131 132
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
D
dzhwinter 已提交
133
    if (UNLIKELY(!tensor.IsInitialized())) {
134 135
      return default_lod;
    }
M
minqiyang 已提交
136
    return tensor.lod();
Q
Qiao Longfei 已提交
137 138 139 140 141
  } else {
    return default_lod;
  }
}

142
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
143 144
  VLOG(4) << place << " " << DebugStringEx(&scope);
  if (platform::is_gpu_place(place)) {
145
#ifndef PADDLE_WITH_CUDA
146
    PADDLE_THROW("Cannot run operator on place %s", place);
147
#else
148 149
    auto dev_id = boost::get<platform::CUDAPlace>(place).device;
    platform::SetDeviceId(dev_id);
150 151
#endif
  }
D
dzhwinter 已提交
152 153 154 155 156

  // The profile has a process-wide mutex, results in serious performance issue
  // in concurrency scenerio. Here use an `if` to fix this issue.
  // Please not remove the `if`, ask @Superjomn if there are any concern.

157
  RunImpl(scope, place);
D
dzhwinter 已提交
158

159
  VLOG(3) << place << " " << DebugStringEx(&scope);
160 161
}

162 163 164 165 166 167 168 169
bool OperatorBase::HasInputs(const std::string& name) const {
  if (inputs_.find(name) != inputs_.end()) {
    return true;
  } else {
    return false;
  }
}

170
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
171
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
172
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
173 174
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
175
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
176 177
}

Y
Yu Yang 已提交
178 179
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
180
  auto it = inputs_.find(name);
181 182
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
183
  return it->second;
Y
Yan Chunwei 已提交
184 185
}

186
bool OperatorBase::HasOutputs(const std::string& name) const {
187
  if (outputs_.find(name) != outputs_.end()) {
188 189 190 191 192 193
    return true;
  } else {
    return false;
  }
}

194
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
195
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
196
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
197 198
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
199
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
200 201
}

Y
Yu Yang 已提交
202 203
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
204
  auto it = outputs_.find(name);
205 206
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
207
  return it->second;
Y
Yan Chunwei 已提交
208 209
}

210
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
211
  std::stringstream ss;
Y
Yu Yang 已提交
212
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
213 214
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
215 216
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
217 218
      auto var_name = input.second[i];
      ss << var_name;
219
      if (scope) {
Q
Qiao Longfei 已提交
220 221 222 223 224 225 226 227 228 229 230
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
231
        }
232
      }
Y
Yu Yang 已提交
233 234 235
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
236
    }
Y
Yu Yang 已提交
237
    ss << "]";
Y
Yu Yang 已提交
238 239
    ++it;
    if (it != inputs_.end()) {
240 241
      ss << ", ";
    }
Q
Qiao Longfei 已提交
242
  }
Y
Yu Yang 已提交
243
  ss << "}, outputs:{";
Y
Yu Yang 已提交
244 245
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
246 247
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
248 249
      auto var_name = output.second[i];
      ss << var_name;
250
      if (scope) {
Q
Qiao Longfei 已提交
251 252 253 254 255 256 257 258 259
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
260
        }
261
      }
Y
Yu Yang 已提交
262 263 264
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
265
    }
Y
Yu Yang 已提交
266
    ss << "]";
Y
Yu Yang 已提交
267 268
    ++it;
    if (it != outputs_.end()) {
269 270
      ss << ", ";
    }
Q
Qiao Longfei 已提交
271
  }
Y
Yu Yang 已提交
272
  ss << "}.";
Q
Qiao Longfei 已提交
273 274 275
  return ss.str();
}

Y
Yu Yang 已提交
276
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
277 278
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
279 280
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
281 282
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
283
}
284

Q
qijun 已提交
285 286
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
287
  for (auto& o : inputs_) {
Q
qijun 已提交
288 289 290 291 292 293
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
294 295 296 297 298 299 300 301 302 303
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
304
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
305 306

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
307
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
308 309 310 311 312 313 314 315 316
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
317 318
}

319 320 321
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
322
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
323 324

  for (auto& in : op_info->Proto().inputs()) {
325 326 327 328
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
329 330 331
  }

  for (auto& out : op_info->Proto().outputs()) {
332 333 334 335 336
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

353 354 355 356
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

357
static const Tensor* GetTensorFromVar(Variable* var) {
Q
QI JUN 已提交
358
  if (var->IsType<LoDTensor>()) {
359
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
360
  } else if (var->IsType<SelectedRows>()) {
361
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
362
  } else {
Y
Yang Yang 已提交
363 364
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
365 366 367 368 369
  }
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  if (var->IsType<LoDTensor>()) {
370
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
371
  } else if (var->IsType<SelectedRows>()) {
372
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
373
  } else {
Y
Yang Yang 已提交
374 375
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
376 377 378
  }
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

411
template <>
412
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
413
  auto* var = InputVar(name);
414 415
  return var == nullptr ? nullptr
                        : GetTensorFromVar(const_cast<Variable*>(var));
416 417 418
}

template <>
419
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
420 421 422 423
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
424 425 426 427 428
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
429 430 431 432
  return res;
}

template <>
433
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
434
  auto var = OutputVar(name);
Q
QI JUN 已提交
435
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
436 437 438
}

template <>
439
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
440 441 442 443
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
444 445
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
446 447
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
448
                                         : GetMutableTensorFromVar(var);
449
                 });
450 451 452
  return res;
}

Y
Yu Yang 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

468 469 470 471 472 473
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
D
dzhwinter 已提交
474 475 476 477
    // has only one input
    const auto& ins = op_.Inputs();
    auto it = ins.find(name);
    if (it == ins.end()) {
478 479
      return false;
    }
D
dzhwinter 已提交
480 481
    const auto& in = it->second;
    if (in.size() == 0 || in[0] == kEmptyVarName) {
482 483
      return false;
    }
D
dzhwinter 已提交
484
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
485
                      "Input %s should not have more than one inputs", name);
D
dzhwinter 已提交
486
    return scope_.FindVar(in[0]) != nullptr;
487 488 489
  }

  bool HasOutput(const std::string& name) const override {
D
dzhwinter 已提交
490 491 492 493
    // has only one output
    const auto& outs = op_.Outputs();
    auto it = outs.find(name);
    if (it == outs.end()) {
494 495
      return false;
    }
D
dzhwinter 已提交
496 497
    const auto& out = it->second;
    if (out.size() == 0 || out[0] == kEmptyVarName) {
498 499
      return false;
    }
D
dzhwinter 已提交
500 501 502
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
    return scope_.FindVar(out[0]) != nullptr;
503 504 505
  }

  bool HasInputs(const std::string& name) const override {
506 507 508
    if (!op_.HasInputs(name)) {
      return false;
    }
509 510 511 512 513 514 515 516 517 518 519 520 521
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
522 523 524
    if (!op_.HasOutputs(name)) {
      return false;
    }
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

D
dzhwinter 已提交
549 550
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
Q
Qiao Longfei 已提交
551 552
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
D
dzhwinter 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
    const std::string& input_n = Inputs(in)[i];
    const std::string& output_n = Outputs(out)[j];

    Variable* in_var = scope_.FindVar(input_n);
    Variable* out_var = scope_.FindVar(output_n);
    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
                   "The type of %s and %s is not the same.", output_n,
                   GetDim(input_n));

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    const std::vector<std::string>& inputs = Inputs(in);
    const std::vector<std::string>& outputs = Outputs(out);
    PADDLE_ENFORCE_LT(i, inputs.size());
    PADDLE_ENFORCE_LT(j, outputs.size());
    Variable* in_var = scope_.FindVar(inputs.at(i));
Q
Qiao Longfei 已提交
586
    if (!in_var->IsType<LoDTensor>()) return;
D
dzhwinter 已提交
587
    Variable* out_var = scope_.FindVar(outputs.at(j));
Q
Qiao Longfei 已提交
588 589 590 591 592
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
593

M
mozga-intel 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
613 614
  }

615 616 617
  bool IsRuntime() const override { return true; }

 protected:
618 619
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
F
fengjiayi 已提交
620
    PADDLE_ENFORCE_NOT_NULL(var);
621 622 623 624 625
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
626 627 628 629 630 631 632
      PADDLE_THROW(
          "Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
          "type_id is %s.",
          name, var->Type().name());
    }
  }

F
fengjiayi 已提交
633
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
634
    PADDLE_THROW("Only compile time support this method");
635 636 637 638 639 640 641 642 643
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
644 645
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
646 647 648
    }
  }

F
fengjiayi 已提交
649 650
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
651
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
652 653
  }

654
  proto::VarType::Type GetVarType(const std::string& name) const override {
655 656 657 658
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

F
fengjiayi 已提交
659 660 661 662
  InferShapeVarPtr GetVarPtr(const std::string& name) override {
    return scope_.FindVar(name);
  }

663
 private:
664 665 666 667
  const OperatorBase& op_;
  const Scope& scope_;
};

C
chengduoZH 已提交
668 669 670 671 672
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
S
sneaxiy 已提交
673
  if (!IsType<float>(tensor.type()) && !IsType<double>(tensor.type())) {
C
chengduoZH 已提交
674 675 676 677 678 679 680 681
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

682 683
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
684 685
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
686
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
687
  auto* dev_ctx = pool.Get(place);
688

689 690 691 692
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
693 694
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
695 696
  }

Q
qiaolongfei 已提交
697 698
  OpKernelMap& kernels = kernels_iter->second;

699 700
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
701

702 703 704 705
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

Y
yuyang18 已提交
706 707
  auto expected_kernel_key =
      this->GetExpectedKernelType(ExecutionContext(*this, scope, *dev_ctx));
D
dzhwinter 已提交
708
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
Q
qiaolongfei 已提交
709

710
  auto kernel_iter = kernels.find(expected_kernel_key);
711
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
712
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
713 714
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
P
Paweł Żelazko 已提交
715
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
716 717 718 719 720
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
721 722 723 724 725
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
726 727 728 729
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
      TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
730

Y
yuyang18 已提交
731 732 733 734 735 736
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
737
  }
Q
QI JUN 已提交
738

Y
yuyang18 已提交
739
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
D
dzhwinter 已提交
740

Y
yuyang18 已提交
741 742 743
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
744 745
  }

D
dzhwinter 已提交
746
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
747
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
748
    dev_ctx->Wait();
D
dzhwinter 已提交
749
  }
C
chengduoZH 已提交
750 751 752

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
753
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
754 755 756
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
757 758
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
759 760 761
      }
    }
  }
Q
Qiao Longfei 已提交
762
}
Y
yuyang18 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
    auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name));
    auto* transformed_tensor =
        GetTensorFromVar(transfer_scope.FindVar(var_name));
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

Scope* OperatorWithKernel::TryTransferData(
    const Scope& scope, const OpKernelType& expected_kernel_key,
    std::vector<std::string>* transfered_inplace_vars) const {
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      // Only tensor can be tranfer to another device.
      if (var == nullptr || !VarIsTensor(var)) {
        continue;
      }

      auto* tensor_in = GetTensorFromVar(var);
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;

      if (new_scope == nullptr) {
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
      Tensor out;
Y
yuyang18 已提交
814
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
815 816 817 818 819 820
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
821

822
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
823 824 825
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
826
  std::string last_input_name;
Y
Yu Yang 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
841 842
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
843 844
              "DataType of Paddle Op %s must be the same. Get %s(%d) != %s(%d)",
              Type(), last_input_name, data_type, ipt_name, tmp);
Y
Yu Yang 已提交
845
          data_type = tmp;
846
          last_input_name = ipt_name;
Y
Yu Yang 已提交
847 848 849 850 851
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
852
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
853
}
854

855 856 857 858 859 860 861 862
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
863 864
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
865 866
}

Q
Qiao Longfei 已提交
867
}  // namespace framework
L
liaogang 已提交
868
}  // namespace paddle